Báo cáo Nghiên cứu thiết kế, chế tạo thiết bị phụ tùng thay thế cho công nghiệp xi măng lò quay 1,4 triệu tấn năm - Tập 2: Lọc bụi tĩnh điện

pdf 176 trang yendo 4430
Bạn đang xem 20 trang mẫu của tài liệu "Báo cáo Nghiên cứu thiết kế, chế tạo thiết bị phụ tùng thay thế cho công nghiệp xi măng lò quay 1,4 triệu tấn năm - Tập 2: Lọc bụi tĩnh điện", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • pdfbao_cao_nghien_cuu_thiet_ke_che_tao_thiet_bi_phu_tung_thay_t.pdf

Nội dung text: Báo cáo Nghiên cứu thiết kế, chế tạo thiết bị phụ tùng thay thế cho công nghiệp xi măng lò quay 1,4 triệu tấn năm - Tập 2: Lọc bụi tĩnh điện

  1. Bộ xây dựng Tổng Công ty Cơ khí Xây dựng 125D Minh Khai, Quận Hai Bà Tr−ng Hà Nội Báo cáo tổng kết Đề tài KHCN cấp nhà n−ớc Nghiên cứu thiết kế, chế tạo thiết bị phụ tùng thay thế cho công nghiệp xi măng lò quay 1,4 triệu tấn năm M∙ số kc 06.07 chủ nhiệm đề tài : TS. Phạm Giao Du tập 2 lọc bụi tĩnh điện Thực hiện: Trần Hồng Lam 5846-2 26/5/2006 Hà nội – 2005 Bản quyền 2005 thuộc TCTCKXD Đơn xin sao chép toàn bộ hoặc từng phần tài liệu này phải gửi đến Tổng Giám đốc TCTCKXD trừ tr−ờng hợp sử dụng với mục đích nghiên cứu
  2. Bộ xây dựng Tổng Công ty Cơ khí Xây dựng tập 2 lọc bụi tĩnh điện Trần hồng lam
  3. Tổng quan đề tài kc 06.07 .Đề tài “ Nghiên cứu, thiết kế chế tạo hệ thống thiết bị, phụ tùng thay thế cho công nghiệp xi măng lò quay 1,4 triệu tấn/năm” đ−ợc thực hiện với mục đích nghiên cứu, thiết kế và xây dựng qui trình công nghệ chế tạo một số thiết bị trong các khu công nghệ, phụ tùng trong dây chuyền sản xuất xi măng, b−ớc đầu chế tạo một số cụm. Phụ tùng nhằm từng b−ớc đáp ứng nhu cầu nội địa hoá các thiết bị trên. Đề tài tập trung vào nghiên cứu các thiết bị kho đồng nhất sơ bộ nh− máy rải liệu, máy rút liệu, máy nghiền con lăn, quạt công nghiệp và lọc bui tĩnh điện là những thiết bị không thể thiếu đ−ợc trong các dây chuyền sản xuất xi măng theo ph−ơng pháp khô. Trên cơ sở nghiên cứu tổng quan, phân loại các thiết bị phân tích các đặc tính, tính năng kỹ thuật, lựa chọn các kết cấu phổ biến nhất mang tính tiên tiến và phù hợp với khả năng công nghệ hiện có trong n−ớc, xây dựng ph−ơng pháp tính toán thiết kế các thông số chính của các thiết bị nh− máy nghiền con lăn, cơ cấu phân ly, quạt công nghiệp, lọc bụi tĩnh điện, ph−ơng pháp xác định độ đồng nhất của vật liệu và thiết kế một số ;oại thiết bị: Máy nghiền đứngdùng cho nghiền liệu công suất 280 t/g; quạt công nghiệp Q=1230 m3/p; lọc bụi tĩnh điện; máy rải, rút liệu; băng tải; gầu tải; vít tải. Trong thiết kế máy nghiền đứng đã áp dụng ph−ơng pháp phân tích phần tử hữu hạn để tính toán sức bền, đã xây dựng các thiết kế điều phần kiển tự động cho máy nghiền, lọc bụi tĩnh điên, máy rảt liệu, máy rút liệu. Hầu hết các phần tổng quan phân tích các thiết bị, ph−ơng pháp tính toán đ−ợc xây dựng lần đầu tiên. Trong phạm vi của đề tài đã thực hiện việc chế tạo và thử nghiện thực tế bộ điều khiển cao áp lọc bụi tĩnh điện và chế tao 12 tấn phụ tùng cho máy nghiền đứng 1
  4. Danh sách những ng−ời thực hiện TT Họ và tên Chức vụ Học vị 1 Phạm Giao Du Chủ nhiệm đề tài Tiến sĩ 2 Võ Sỹ Huỳnh Tr−ờng ĐHBK PGS.TS 3 Lê Danh Liên Tr−ờng ĐHBK PGS.TS 4 Ngô Thành Phong Tr−ờng ĐH KHTN TP HCM GS.TS 5 Nguyễn Dũng Tr−ờng ĐH KHTN TP HCM PGS.TS 6 Ngô văn Thành Phân viện NC ĐT-TH-TĐH TP HCM Tiến sĩ 7 Trần Hồng Lam Trung tâm TBCN-IMI Ths. t/ động hoá 8 Phạm L−ơng Tuệ Tr−ờng ĐHBK GS.TS 9 Bùi Quốc Thái Tr−ờng ĐHBK Tiến sĩ 10 Lê Đình ánh Tr−ờng ĐHBK Kỹ s− 11 Nguyễn minh Ph−ơng TCT CKXD Kỹ s− 12 Trần văn Tuấn TCT CKXD Kỹ s− 13 Nguyễn minh Đức TCT CKXD Kỹ s− 14 Trần Văn Sơn Trung tâm TBCN-IMI Kỹ s− Nhiệt 15 Trần Kim Quế GĐ Trung tâm KM-IMI Kỹ s− đ/ l−ờng 16 Nguyễn Quý Bình GĐ Trung tâm CNC-IMI KS. c/ tạo máy 17 Vũ Hoài Nam GĐ Trung tâm TBCN-IMI KS. c/ tạo máy 18 D−ơng Hồng Quân Trung tâm DADT-IMI KS. c/ tạo máy 19 Nguyễn Vĩnh Kỳ GĐ Trung tâm KTMT-IMI KS. c/ tạo máy 20 Đỗ Trọng Bình Phó GĐ Trung tâm KTMT-IMI Kỹ s− Nhiệt 21 L−ơng Ngọc Ph−ợng Phó GĐ Trung tâm KTMT-IMI KS. T/ động hoá 2
  5. Mục lục 1 Lời mở đầu 4 2 Tổng quan về công nghệ và thiết bị sản xuất xi măng 5 theo ph−ơng pháp khô ở Việt nam hiện nay 3 Phần máy nghiền đứng và thiết bị kho đồng nhất sơ bộ Quyển riêng 4 Lọc bụi tĩnh điện Quyển riêng 5 Nghiên cứu thiết kế quạt công nghiệp Quyển riêng 6 Kết luận và kiến nghị 28 7 Tài liệu tham khảo 30 3
  6. Lời mở đầu Tr−ớc sự phát triển của mền kinh tế trong n−ớc, nhu cầu về vật liêu xây dựng trong đó xi măng đóng vai trò quan trọng và tăng không ngừng. Theo tính toán từ nay tới năm 2010 mỗi năm chúng ta phải đ−a vào vận các dây chuyền sản xuất xi măng công suất khoảng 3 triệu tấn/ năm. Tuy nhiên cho đến nay chúng ta vẫn nhập ngoại toàn bộ tiết bị công nghệ. Hiện mới chỉ có nghiên cứu thiết kế các thiết bị cho lò đứng, đối với các dây chuyền thiết bị trong các nhà máy xi măng ph−ơng pháp khô ch−a đ−ợc đầu t− nghiên cứu, vì thế việc từng b−ớc nghiên cứu chế tạo thiết bị phụ tùng cho các dây chuyền sản xuất xi măng ph−ơng pháp khô là cần thiết. Đề tài “ Nghiên cứu, thiết kế chế tạo hệ thống thiết bị, phụ tùng thay thế cho công nghiệp xi măng lò quay 1,4 triệu tấn/năm” là b−ớc đầu cho việc nghiên cứu, thiết kế từng b−ớc các thiết bị trong dây chuyền sản xuất xi măng lò quay ph−ơng pháp khô. Trên cơ sở các dây chuyền thiết bị nhập ngoại, Đề tài tập trung nghiên cứu, thiết kế các thiết bị kho đồng nhất sơ bộ, băng tải (B=0,8m; L=450m; N=300t/g), gầu tải (B-0,8m; H=80m; N=400t/g), vít tải (D=0,45m; L=15m; N=50t/g) đ−ợc sử dụng phổ biến trong các dây chuyền xi măng công suất 1,4 triệu tấn/năm. Lọc bụi tĩnh điện (Q=1230m3/p; n=3; F-26m2), quạt công nghiệp (Q=1239m3/p; P=2599Pa) và máy nghiền đứng (N-280-320t/g; Blaine=3200), xây dựng qui trình công nghệ chế tạo và chế tạo thử nghiệm bộ điều khiển cao áp lọc bụi tĩnh điện, 12 tấn phụ tùng cho máy nghiền đứng. Tổng kinh phí thực hiện đè tài 4990tr, đồng trong đó vốn cấp là 1350tr. đồng, đ−ợc triển khai thực hiên từ tháng 10/2001 đến 12/2004. 4
  7. 1.Tổng quan về công nghệ và thiết bị sản xuất xi măng theo ph−ơng pháp khô ở Việt nam hiện nay 1.1.Hiện trạng sản xuất xi măng ở Việt nam Trong 10 năm qua ngành công nghiệp vật liệu xây dựng nói chung và công nghiệp xi măng nói riêng của Việt nam đã không ngừng phát triển, đáp ứng cho nhu cầu xây dựng cơ sở vật chất của cả n−ớc không những về số l−ợng mà cả về chất l−ợng và chủng loại sản phẩm. Hiện nay mạng l−ới các nhà máy xi măng phân bố ở tất cả các vùng trong cả n−ớc với quy mô và công nghệ sản xuất khác nhau bao gồm: - 55 nhà máy xi măng lò đứng sản xuất theo ph−ơng pháp bán khô với quy mô công suất các lò đứng từ 140 tấn clanhke/ngày tới 240 tấn clanhke/ngày. - 3 nhà máy xi măng lò quay sản xuất theo ph−ơng pháp −ớt có công suất các lò quay là 413 tấn clanhke/ngày và 1.750 tấn clanhke/ngày. - 9 nhà máy xi măng lò quay sản xuất theo ph−ơng pháp khô có công suất các lò quay từ 3.000 tấn clanhke/ngày cho tới 5.800 tấn clanhke/ngày (kể cả các nhà máy xi măng liên doanh, Hoàng mai, Tam điệp và Hải phòng mới). Trong vòng 10 năm lĩnh vực này đã đ−ợc đầu t− khá đa dạng về quy mô công suất nhà máy (lớn, vừa, nhỏ), về hình thức đâù t− (nhà n−ớc, địa ph−ơng, liên doanh, t− nhân) và cả về nguồn vốn đầu t− (vốn tự có, vốn vay trong n−ớc, vốn vay n−ớc ngoài). 1.2.Vốn đầu t− Vốn đầu t− vào lĩnh vực xi măng giai đoạn 1991 - 2000 khoảng 1.495 triệu USD, trong đó: - Vốn đầu t− n−ớc ngoài (FDI): 20% - Vốn vay thiết bị trả chậm : 50% - Vốn trong n−ớc : 30% Trong bảng 1.1 giới thiệu các cơ sở sản xuất xi măng hiện có của Việt Nam. 5
  8. Bảng 1.1. Các cơ sở sản xuất xi măng của Việt nam Danh mục các cơ sở Công suất thiết kế, Ph−ơng pháp triệu tấn xi măng/năm sản xuất I. Cơ sở của Bộ xây dựng 11,55 1. Cty xi măng Hải phòng 0,35 −ớt 2. Cty xi măng Hoàng thạch 2,3 khô 3. Cty xi măng Bút sơn 1,4 khô 4. Cty xi măng Bỉm sơn 1,8 khô + −ớt 5. Cty xi măng Hà tiên I+II 1,5 khô + −ớt 6. Cty xi măng Hoàng Mai 1,4 khô 7. Cty xi măng Tam Điệp 1,4 khô 8. Cty xi măng Hải Phòng mới 1,4 khô II. Cơ sở liên doanh 7.61 1. Cty xi măng Chinfong 1,4 khô 2. Cty xi măng Nghi sơn 2,15 khô 3. Cty xi măng Sao mai 1,76 khô 4. Cty xi măng Vân xá 0,5 khô 5. C.ty xi măng Phúc sơn 1.8 khô III. Cty xi măng lò đứng 3,957 bán khô IV Trạm nghiền xi măng 3.97 Tổng cộng 27.087 So với năm 1995 cả n−ớc có 4 nhà máy xi măng lò quay và 50 nhà máy xi măng lò đứng với tổng công suất thiết kế 4,45 triệu tấn/năm thì tới năm 2000 đã có 12 nhà máy xi măng lò quay và 55 nhà máy xi măng lò đứng với tổng công suất thiết kế 19,70 triệu tấn/năm (tăng 248 %). 1.3. Sản l−ợng và chất l−ợng xi măng Với việc đầu t− nh− trên, sản l−ợng xi măng của Việt nam đã có mức tăng tr−ởng khá mạnh đ−ợc giới thiệu ở bảng 1.2. Bảng 1.2. Sản l−ợng xi măng của Việt nam Năm 1995 2000 2001 2002 2003 2004 Sản l−ợng 6,81 13,91 16,38 20,55 24,38 26,4 xi măng 6
  9. Qua bảng 1.1, 1.2 rõ ràng xi măng là lĩnh vực đ−ợc tập trung chỉ đạo đầu t− phát triển nên duy trì mức tăng tr−ởng cao. Sản l−ợng xi măng từ 1995 đến năm 2004 tăng hơn 4 lần từ 6,38 triệu tấn tăng lên 26,4 triệu tấn, tăng bình quân 31,6% năm. Xét theo từng kế hoach 5 năm thì mức tăng tr−ởng bình quân giai đoạn 1995 - 2000 là 15,58%/năm, giai đoạn 2000 - 2004 là 17.58 %/năm và dự kiến năm 2005 đạt trên 29 triệu tấn. Sản phẩm chính của các cơ sở lò quay là các loại xi măng poóclăng PC50, PC40 và PC30; xi măng poóclăng hỗn hợp PCB40, PCB30, trong đó xi măng mác cao đạt > 70%. Sản phẩm của các cơ sở xi măng nhà n−ớc và liên doanh đ−ợc trang bị công nghệ tiên tiến, thiết bị hiện đại, hệ thống kiểm tra chặt chẽ nên chất l−ợng xi măng sản xuất đạt các tiêu chuẩn Việt nam về các chủng loại xi măng poóclăng PC: TCVN 2682 - 1999 và xi măng poóclăng hổn hợp PCB: TCVN 6260 - 1997 và t−ơng đ−ơng với chất l−ợng xi măng của các n−ớc trong khu vực và trên thế giới. Cho tới nay đa số các cơ sở xi măng lò quay đã đ−ợc cấp chứng chỉ chất l−ợng ISO 9002. Các loại xi măng lò quay này có hàm l−ợng CaO tự do thấp < 1 %, hàm l−ợng kiềm thấp, độ mịn cao; cùng với các chủng loại xi măng đặc biệt bền sulphát, ít toả nhiệt đã và đang sử dụng rộng rãi trong các công trình vĩnh cửu ở khắp mọi miền đất n−ớc nh− thuỷ điện Hoà bình, thuỷ điện Yaly, cầu Mỹ thuận, đ−ờng hầm Hải vân v.v Trong khi đó các cơ sở xi măng lò đứng đ−ợc đầu t− chiều sâu bằng công nghệ, thiết bị của Trung quốc chủ yếu sản xuất xi măng thông dụng đạt chất l−ợng PCB30 phù hợp sử dụng trong các công trình không yêu cầu khắt khe về kỹ thuật nh− kênh m−ơng thuỷ lợi, đ−ờng bê tông nông thôn, nhà ở thấp tầng v. v 1.3. Công nghệ sản xuất Hiện tại ở Việt nam tồn tại 3 ph−ơng pháp công nghệ sản xuất xi măng khác nhau: - Ph−ơng pháp −ớt với tổng công suất thiết kế 1,129 triệu tấn/năm (5,97%) - Ph−ơng pháp khô với tổng công suất thiết kế 13,681 triệu tấn/năm (72,35%) - Ph−ơng pháp bán khô với tổng công suất thiết kế 4,1 tr. t./năm (21,68%) Trong đó công nghệ tiên tiến sản xuất xi măng theo ph−ơng pháp khô đóng vai trò chủ đạo trong sản xuất xi măng ở Việt Nam hiện nay, hơn nữa các dây chuyền công nghệ đ−ợc đầu t− càng về sau càng tiên tiến, hiện đại hơn dây chuyền tr−ớc với những thiết bị công nghệ tiên tiến, hiện đại của các hãng chế tạo thiết bị nỗi tiếng của thế giới nh− F.L.Smidth, Krupp Polysius, Pfeiffer, Fuller, Kobe, CPAG, H & B, Bedeschi, Elex, Loesch v.v Các công đoạn chính của dây chuyền sản xuất xi măng theo ph−ơng pháp khô này gồm: - Gia công đập nhỏ các nguyên liệu. 7
  10. - Đồng nhất các nguyên liệu trong các kho dài. - Nghiền phối liệu trong máy nghiền đứng con lăn công suất lớn theo chu trình kín nghiền, sấy liên hợp với máy phân ly khí động hiệu suất cao. - Đồng nhất bột liệu bằng xilô đồng nhất dòng liên tục nhiều cửa. - Hệ thống lò nung gồm tháp trao đổi nhiệt 2 nhánh 4, 5 tầng với buồng phân huỷ hiệu suất cao và lò quay 3 gối đỡ, có công suất 3.000 tấn clanhke/ngày tới 5.800 tấn clanhke/ngày. - Làm lạnh clanhke trong máy lạnh kiểu ghi hiệu suất cao. - Nghiền xi măng trong hệ thống nghiền chu trình kín với phân ly hiệu suất cao 2 cấp: nghiền sơ bộ băng máy nghiền đứng con lăn và nghiền kết thúc trong máy nghiền bi . - Đóng bao bằng máy đóng bao tự động dạng quay. - Xuất xi măng bao hoặc rời băng ôtô và tàu hoả. 1.4. Các chỉ tiêu kỹ thuật Chính nhờ đầu t− công nghệ tiên tiến và thiết bị hiện đại theo ph−ơng pháp khô nên sản xuất xi măng lò quay đã đạt mức thế giới về các chỉ tiêu d−ới đây: - Tiêu hao nhiệt năng : < 730 kcal/kg clanhke - Tiêu hao điện năng : < 100 KWh/ tấn xi măng - Sử dụng 100% than cám chất bốc thấp để nung lò quay 3 - Bảo vệ môi tr−ờng: hàm l−ợng bụi trong khí thải < 50 mg/Nm . Các thành phần SO2,. CO, NOx trong khí thải của lò nung đ−ợc khống chế chặt chẽ theo tiêu chuẩn quốc tế - Chất l−ợng clanhke : đạt tiêu chuẩn cho sản xuất xi măng poóc lăng PC 50 - Toàn bộ quá trình sản xuất đ−ợc điều khiển tự động ở phòng điều khiển trung tâm 1.5. Dây chuyền công nghệ sản xuất xi măng theo ph−ơng pháp khô có công suất 4.000 tấn clanhke/ngày (t−ơng đ−ơng 1,4 triệu tấn xi măng/năm) Công nghệ sản xuất của nhà máy xi măng công suất 4.000 tấn Clanke/ngày đ−ợc thiết kế theo công nghệ tiên tiến hiện nay trên thế giới: Sản xuất theo ph−ơng pháp khô, sử dụng tháp trao đổi nhiệt 2 nhánh 5 tầng với buồng phân huỷ và lò quay 3 gối đỡ, đốt bằng 100% than Antraxit chất bốc thấp; nhà máy đ−ợc trang bị hệ thống thiết bị đồng bộ từ công đoạn đập đá vôi tới xuất xi măng có mức độ tự động hoá và cơ giới hoá cao. Toàn bộ dây chuyền công nghệ sản xuất xi măng của nhà máy đ−ợc điều khiển từ phòng điều khiển trung tâm và đạt đ−ợc các chỉ tiêu kỹ thuật sau: - Chất l−ợng sản phẩm: Clanhke PC 50 theo tiêu chuẩn BS - Tiêu hao nhiệt năng, Kcal/kg clanhke: < 730 - Tiêu hao điện năng, KWh/tấn xi măng: < 100 8
  11. - Nồng độ bụi khí thải, mg/Nm3 : < 50 1.5.1. Sơ đồ dây chuyền công nghệ sản xuất xi măng theo ph−ơng pháp khô ở Việt nam hiện nay Dây chuyền công nghệ sản xuất xi măng theo ph−ơng pháp khô hiện đang áp dụng trong các nhà máy xi măng lò quay của Việt nam đ−ợc mô tả theo sơ đồ d−ới đây Sơ đồ dây chuyền công nghệ của nhà máy xi măng lò quay sản xuất theo ph−ơng pháp khô Đá vôi Đá sét Phụ gia Thạch cao Than Đập Đập Đập Kho chứa Kho chứa Các kho Phụ gia ĐC Than Thạch cao Phụ giaXM Định l−ợng Định l−ợng Định l−ợng Nghiền liệu Nghiền than Xilô đồng nhất Tháp trao đổi nhiệt Lò quay Máy làm lạnh Xilô clanhke Định l−ợng Nghiền sơ bộ Nghiền kết thúc Xuất xi măng rời Xilô xi măng Đóng bao Xuất xi măng bao 9
  12. 1.5.2. Đặc tr−ng của các công đoạn công nghệ sản xuất xi măng 1.5.2.1. Đập đá vôi Trong các nhà máy xi măng, đá vôi là một trong những nguyên liệu chính để sản xuất. Quá trình đập đá vôi đóng một vai trò quan trọng trong toàn bộ hoạt động của tất cả các nhà máy xi măng, do đó máy đập đá vôi phải đ−ợc lựa chọn rất cẩn thận trên cơ sở các kinh nghiệm vận hành ở các nhà máy xi măng t−ơng tự. Hiện nay đá vôi đ−ợc khai thác chủ yếu bằng nổ mìn, việc đó làm cho trong các cục đá vôi to quá cở th−ờng lẫn nhiều sét và cát, làm cho trong miệng cấp của các máy đập đá vôi luôn phải chứa các cục đá vôi có kích th−ớc rất lớn và kèm thêm một số nguyên liệu khác có độ dính. Để giải quyết vấn đề trên, các hãng chế tạo thiết bị xi măng nỗi tiếng thế giới đã thiết kế loại máy đập búa kiểu va đập - hắt (Hammer Impact Crusher). Máy đập búa va đập - hắt là một hệ thống có tính thực tiển và kinh tế cho việc thực hiện đối với các loại nguyên liệu có độ mài mòn và độ dính. Trong loại máy đập búa truyền thống với miệng cấp vào nằm ở phía trên, các tảng đá rất to trong miệng cấp có thể cản trở hoạt động của các búa và làm kẹt máy đập búa. Máy đập búa va đập - hắt sẽ loại trừ đ−ợc sự nguy hiểm này và tiếp nhận rất tốt các tảng đá lớn vì hệ thống miệng cấp nằm ngang sẽ tạo đ−ợc 1 hoặc 2 cú đập do các trục cấp bên trong thực hiện. Các trục cấp bên trong của máy đập th−ờng nằm ngang, bảo đảm cho việc kiểm tra cấp liệu chính xác. Máy đập búa va đập - hắt có thể làm giảm kích th−ớc các tảng đá vôi lớn khai thác ở mỏ từ 2,5 m (khoảng 5 tấn) tới kích th−ớc cục đá vôi cấp cho máy nghiền liệu là 25 mm chỉ trong 1 cấp, nh− vậy tỷ số đập có thể đạt tới 100:1. Công suất của kiểu máy đập này có thể đạt 2.500 tấn/h cho loại máy có ghi ra và tới 3.000 tấn/h cho máy đập không có ghi ra. Trong máy đập búa va đập - hắt quá trình đập đ−ợc thực hiện qua 3 b−ớc: b−ớc 1 là va đập - hắt bởi các trục bên trong, b−ớc 2 các cục đá vôi đ−ợc nén và chặt giữa các búa và tấm đập và cuối cùng chúng đ−ợc đập giữa các búa và ghi ra. Quá trình đập nh− thế bảo đảm không thể có cục đá vôi nào quá kích th−ớc yêu cầu lọt qua khỏi máy đập . Tấm ghi ra điều chỉnh của máy đập va đập - hắt là 1 bộ phận kiểm tra kích th−ớc trên của sản phẩm đập và bảo đảm cho 1 dòng đá vôi đều đặn chảy tới băng tải. Các bộ phận chính của máy đập này gồm có các trục bên trong, trục búa, tấm đập điều chỉnh và các truyền động chính, phụ. Các −u điểm của kiểu máy đập búa va đập - hắt so với các loại máy đập búa truyền thống gồm: - Không yêu cầu phải có đập sơ bộ 10
  13. - Làm giảm kích th−ớc các tảng đá vôi khai thác ở mỏ tới kích th−ớc cấp vào máy nghiền liệu chỉ trong 1 cấp. - Diện tích trạm đập nhỏ, chiều cao trạm thấp, đơn giản bố trí trong tổng mặt bằng và giảm giá xây dựng. - Có thể dễ dàng vào phía trong máy đập bằng cách mở phía trên máy đập bằng thuỷ lực. - Bảo d−ỡng hệ thống truyền động dễ dàng bởi sử dụng hộp số thay cho truyền động đai. - Tấm ghi ra cho phép kiểm tra chính xác kích th−ớc trên của sản phẩm đập và bảo đảm 1 dòng chảy đều đặn tới băng tải. Hiện nay trong các nhà máy xi măng của ta sử dụng các loại máy đập búa va đập – hắt (Impact crusher) có công suất từ 600 tấn/h tới 950 tấn/h, đ−ờng kính roto 2,0 m và chiều rộng 2,0 m. 1.5.2.2. Đập đá sét Đối với nguyên liệu đá sét th−ờng có độ ẩm, dẻo và dính, hiện nay chủ yếu sử dụng máy đập răng 2 trục (Tooth roller crusher), công suất 200 tấn/h tới 300 tấn/h. Kích th−ớc vào của các tảng sét tới 800 mm, kích th−ớc sau đập < 50 mm, đ−ờng kính các trục là 650 mm, chiều rộng là 2.200 mm. Máy này hoạt động có hiệu quả với loại nguyên liệu có độ dính cao. Kiểu máy này có vận tốc các trục nhỏ cho nên vận tốc các roto cũng khá thấp (1,5 – 3 m/s) và nó có các −u điểm sau: - Các tảng đá sét kích th−ớc lớn có thể đập dễ dàng. - Giảm mức độ mài mòn các chi tiết của máy trực tiếp tiếp xúc với đá sét đập - Tiêu hao điện năng thấp (0,2 – 0,5 Kwh/t). 1.5.2.3. Các nguyên liệu khác - Than chuyên chở về nhà máy đổ vào phễu tiếp nhận và vận chuyển theo băng tải vào kho tổng hợp. - Xỉ Pirit, thạch cao, phụ gia điều chỉnh và phụ gia xi măng chuyên chở về nhà máy dỡ vào phễu tiếp nhận và vận chuyển theo băng tải vào kho tổng hợp, riêng thạch cao và các loại phụ gia đ−ợc gia công đập nhỏ bằng 1 máy đập búa từ kích th−ớc cục ≤ 500 mm xuống kích th−ớc cục ≤ 25 mm) trong quá trình tiếp nhận. 1.5.2.4. Hệ thống kho đồng nhất sơ bộ nguyên liệu Trong sản xuất xi măng theo ph−ơng pháp khô, đồng nhất sơ bộ các nguyên liệu ban đầu đóng một vai trò quan trọng, nhằm giảm mức độ dao động, ổn định các nguyên liệu này tr−ớc khi đ−a vào nghiền phối liệu. Các nguyên liệu nh− đá vôi, đá sét 11
  14. th−ờng có thành phần hoá học dao động khá lớn, sau khi đ−ợc gia công đập nhỏ đ−ợc đồng nhất sơ bộ trong các kho dài theo các ph−ơng pháp đồng nhất đ−ợc xác định tr−ớc. Có 2 ph−ơng pháp đồng nhất sơ bộ: đồng nhất chung các loại nguyên liệu và đồng nhất riêng lẽ từng nguyên liệu. Trong ngành công nghiệp xi măng chủ yếu sử dụng ph−ơng pháp đồng nhất riêng lẽ từng loại nguyên liệu. Các nguyên liệu sau khi đồng nhất sơ bộ đ−ợc phối liệu với nhau theo thành phần hoá học thiết kế và đ−a vào máy nghiền liệu qua các bunke và cân băng định l−ợng. Căn cứ vào kết quả phân tích thành phần hoá học hỗn hợp phối liệu ở đầu ra máy nghiền để điều chỉnh thành phần của nó các nguyên liệu sau khi gia công đập nhỏ mới tiến hành đồng nhất sơ bộ. Chất l−ợng nguyên liệu chất đống phụ thuộc vào ph−ơng pháp rải liệu. Thông th−ờng việc rải liệu tiến hành theo chiều dọc đống và khi rút thì rút theo chiều ngang. Nếu diện tích không đủ diện tích thì rải theo vòng tròn. Nh−ng chi phí để rải vòng cao hơn 40% so với đống ngang. a/ Kho đá vôi Đá vôi đ−ợc chứa và đồng nhất sơ bộ trong 1 kho dài. Đánh đống theo ph−ơng pháp Chevron (đống kiểu mái nhà) với thiết bị đánh đống là cần rải liệu băng tải di động chạy dọc theo đống liệu, nh− vậy cứ lớp liệu này chồng lên lớp khác ở dạng 2 mái. Rải liệu rất đơn giản từ một điểm có thể rải dọc đống theo mỗi tiết diện ngang. Khi điều chỉnh tốc độ máy đánh đống để có đ−ợc chiều dày các lớp theo ý muốn. Nếu thành phần hạt của vật liệu không đồng nhất thì những cục lớn hơn sẽ rơi và tích tụ lại ở chân đống. Thiết bị rút liệu là cầu xích gạt. Kho chứa dài có khả năng đồng nhất sơ bộ tốt, giảm đ−ợc độ dao động nguyên liệu. b/ Kho đá sét Đá sét là loại nguyên liệu có thành phần hoá học dao động nhiều và có độ dính. Để chứa và đồng nhất sơ bộ sử dụng loại kho dài có t−ờng ngăn 2 bên, đánh đống theo ph−ơng pháp rải thành từng lớp (Windrow) đ−ợc trang bị các thiết bị đánh đống và rút đá sét nên mức độ đồng nhất đạt cao 10:1, nhờ việc đá sét đ−ợc rải theo chiều dọc kho với nhiều lớp khác nhau, còn khi rút đá sét thì thực hiện theo mặt cắt ngang kho chứa. ở n−ớc ta đá sét cho sản xuất xi măng th−ờng có thành phần hoá học dao động khá lớn nên sử dụng loại kho này là rất thích hợp và đạt đ−ợc mức độ đồng nhất sơ bộ của đá sét cao làm cơ sở ổn định thành phần phối liệu, tuy rằng loại kho này có chi phí đầu t− cao hơn loại kho dài chứa đá vôi nêu trên. 12
  15. c/ Kho nguyên liệu tổng hợp xỉ Pirit, thạch cao, phụ gia và than Các nguyên liệu xỉ Pirit, thạch cao, phụ gia và than đ−ợc chứa trong 1 kho dài. Thiết bị đánh đống là cần rải liệu di động và thiếtbị rút là gầu xúc bên. Than chứa thành 2 đống còn xỉ pirit, phụ gia và thạch cao chứa thành 1 đống. Các loại kho chứa đã đồng nhất sơ bộ đá vôi, đá sét và nguyên liệu tổng hợp trên đây là loại kho đang đ−ợc sử dụng rộng rãi hiện nay trên thế giới trong công nghệ đồng nhất sơ bộ nguyên liệu. 1.5.2.5. Nghiền phối liệu Đây là một trong những công đoạn đặc tr−ng nhất của sản xuất xi măng theo ph−ơng pháp khô: chuẩn bị phối liệu khô. Để thực hiện công việc này, các hãng cung cấp thiết bị xi măng đã nghiên cứu chế tạo thiết bị nghiền hiện đại là máy nghiền đứng con lăn. Trong thiết bị này thực hiện đồng thời 3 quá trình công nghệ: nghiền, sấy và phân ly. Phối liệu đ−ợc cấp vào trung tâm bàn nghiền và đ−ợc nghiền giữa bàn nghiền và các con lăn. Lực nghiền đ−ợc áp dụng là sự phối hợp giữa khối l−ợng tịnh của các con lăn và lực đ−ợc bổ sung qua các thanh kéo. Lực này đ−ợc điều chỉnh bởi hệ thống bơm thuỷ lực. Một đặc điểm quan trọng khác của máy nghiền này là các con lăn có thể nâng lên bất cứ lúc nào cần. Tr−ớc hết việc khởi động đ−ợc thực hiện rất dễ dàng với con lăn đ−ợc nâng. Khi môtơ chính chạy và việc cấp liệu đ−ợc đảm bảo thì con lăn hạ xuống và quá trình nghiền bắt đầu. Tiếp theo con lăn có thể đ−ợc nâng lên trong quá trình nghiền nếu cần thiết, ví dụ trong tr−ờng hợp cấp liệu thiếu. Việc cấp liệu cho máy nghiền đ−ợc điều chỉnh tự động dựa trên việc thay đổi áp lực khác nhau trên bàn nghiền. Bột liệu mịn đạt yêu cầu đ−ợc thu vào các xiclôn và vận chuyển về xilô đồng nhất, còn bột liệu thô từ phân li đ−ợc quay trở lại buồng nghiền. Bộ phận phân ly đ−ợc trang bị với 1 môtơ kiểm soát vận tốc tần suất để bảo đảm rằng bột liệu đã nghiền có độ mịn theo đúng yêu cầu. Sản phẩm đ−ợc tập hợp lại trong các xiclôn và một phần của khí gas có thể đ−ợc quay vòng trở lại, phần còn lại đ−ợc khử bụi trong lọc bụi tĩnh điện. Khí nóng từ tháp trao đổi nhiệt qua tháp điều hoà đ−ợc cấp vào máy nghiền đứng con lăn để sấy liệu. Quy trình sấy trong máy nghiền đ−ợc kiểm soát tự động thông qua nhiệt độ đi ra của khí từ máy nghiền và nhiệt độ đi ra này đ−ợc giữ không đổi bằng cách bổ sung n−ớc vào tháp làm lạnh hoặc vào máy nghiền. Máy nghiền đ−ợc cung cấp với 1 hệ thống tuần hoàn cơ và 1 hệ thống phun n−ớc. N−ớc có thể phun vào bàn nghiền tr−ớc mỗi con lăn hoặc là làm ổn định bàn nghiền đặc biệt trong qúa trình khởi động hoặc là để làm mát khí lò. 13
  16. Trong tất cả các nhà máy xi măng ở n−ớc ta (kể cả các liên doanh) đ−ợc xây dựng từ năm 1997 tới nay đều đã đ−ợc trang bị máy nghiền đứng con lăn để nghiền phối liệu khô, có công suất từ 300 tấn/h tới 400 tấn/h. Với máy nghiền đứng con lăn, kích th−ớc phối liệu cấp vào có thể tới 120 mm với độ ẩm 12%; còn độ mịn bột liệu sau nghiền đạt <10% trên sàng 009 với độ ẩm 1%. Hiện nay trên thế giới máy nghiền đứng con lăn là thiết bị tiên tiến hiện đại để nghiền phối liệu khô trong công nghệ sản xuất xi măng đang đ−ợc phổ biến rộng rãi nhờ tiết kiệm đ−ợc năng l−ợng nghiền và giảm chi phí xây dựng bao che. 1.5.2.6. Chứa và đồng nhất bột liệu Để thu nhận đ−ợc xi măng mác cao, bột liệu sau khi nghiền khô nhất thiết phải đ−ợc đồng nhất. Ngày nay do những tiến bộ v−ợt bậc của lĩnh vực khí động lực học và kỹ thuật khí nén, đã tạo điều kiện thực hiện đ−ợc quá trình đồng nhất bột liệu khô bằng khí nén. Bột liệu sau khi nghiền đ−ợc chứa và đồng nhất trong 1 xilô đồng nhất. Nguyên tắc vận hành của xilô này là dòng nhiều cửa. Độ đồng nhất đạt đ−ợc cao do bột liệu đ−ợc rút ở nhiều điểm với các vận tốc khác nhau. Hệ thống rót bột liệu cho xilô đ−ợc thực hiện nhờ hệ thống phân phối gồm các máng khí động cấp bột liệu tại các điểm trên đỉnh xilô. Khoảng đồng nhất ngắn cuối cùng của xilô đồng nhất thực hiện trong thùng hoá lỏng ở bên d−ơí xilô. Có 2 lý do cho thùng cở nhỏ này: để giảm thiểu độ cao của xilô và để tránh sự phân loại. Bột liệu luôn chứa các hạt thô và có tỷ trọng nặng hơn nh− thạch anh, quặng sắt. Nếu việc đồng nhất cuối cùng đ−ợc thực hiện trong thùng to, rộng sẽ đòi hỏi nhiều không khí tại nơi có áp suất cao hơn thì hạt nặng hơn có thể bị phân loại và đi vào lò quay làm cho nó hoạt động không ổn định. Thùng hoá lỏng d−ới xilô đ−ợc hoạt động nh− là 1 hệ thống cấp liệu lò nung. Hệ thống này dựa trên nguyên lý mất trọng l−ợng. Việc kiểm soát hệ thống mất trọng l−ợng đ−ợc tập hợp với xilô đồng nhất. Nguyên lý hoạt động là sự phối hợp giữa việc kiểm soát tỷ trọng và khối l−ợng. Khi thùng đ−ợc đổ đầy theo các chu kỳ và khi ch−a đổ đầy thì dạng kiểm tra là tỷ trọng. Còn trong suốt thời gian đổ đầy thì dạng kiểm tra là khối l−ợng nơi mà hệ thống bù độ chênh lệch của áp lực khác nhau trong thùng để đảm bảo tỷ lệ rút đ−ợc ổn định. Trong tất cả các nhà máy xi măng lò quay của chúng ta hiện nay, kể từ nhà máy xi măng Hoàng thạch đều bố trí các xi lô đồng nhất để chứa và đồng nhất bột liệu sau nghiền khô, có sức chứa 8.000 tấn, 9.000 tấn tới 20.000 tấn. Các −u điểm khi sử dụng xi lô đồng nhất gồm: chứa và đồng nhất thực hiện trong 1 xi lô, vốn đầu t−, chi phí vận hành và bảo d−ỡng thấp, hiệu quả đồng nhất cao. 14
  17. Hệ thống rót bột liệu cho xilô đ−ợc thực hiện nhờ hệ thống phân phối gồm các máng khí động cấp bột liệu tại các điểm trên đỉnh silô tạo điều kiện thuận lợi cho việc đồng nhất và tăng hệ số sử dụng của xilô. 1.5.2.7. Cấp liệu lò nung Bột liệu từ xilô đồng nhất theo các hệ thống gầu nâng khác nhau cấp liệu cho lò quay, trong đó th−ờng bố trí 1 hệ thống gầu nâng dự phòng, bảo đảm khả năng cấp liệu liên tục cho lò quay trong tr−ờng hợp hệ thống gầu nâng chính bị trục trặc cần sửa chữa. 1.5.2.8. Hệ thống thiết bị nung và làm lạnh clanhke Tiết kiệm nhiệt năng trong các hệ thống thiết bị nung và làm lạnh clanhke khác nhau phụ thuộc chủ yếu vào kích th−ớc, số l−ợng tầng của tháp trao đổi nhiệt, tỉ lệ các nhánh phụ khí lò, thành phần phối liệu và chủng loại nhiên liệu sử dụng. Trong đó ý nghĩa quyết định cho việc tiết kiệm nhiệt năng là đã thiết lập các hệ thống tháp trao đổi nhiệt kiểu xiclôn, tạo điều kiện giảm nhiệt độ khí thoát ra xuống tới 3300 C mà tr−ớc đây ch−a thể đạt đ−ợc. Trong các nhà máy xi măng lò quay sản xuất theo ph−ơng pháp khô đều đ−ợc trang bị hệ thống thiết bị nung và làm lạnh clanhke gồm: - Tháp trao đổi nhiệt 1 hoặc 2 nhánh có 4, 5 tầng xiclôn với buồng phân huỷ. Phát minh đầu tiên về tháp trao đổi nhiệt với tên gọi ” Ph−ơng pháp và thiết bị để nạp bột liệu cho lò quay” do kỹ s− M. Fogel Iorgecen ( hãng Smidth) gữi cho Cục Phát minh n−ớc Cộng hoà Tiệp khắc năm 1932 và đ−ợc cấp Bằng phát minh số 48169 ngày 25/7/1935. Trong Bằng phát minh này đã nêu rõ các đặc điểm quan trọng nhất của tháp trao đổi nhiệt ( kể cả sử dụng nhiệt từ tháp này để sấy bột liệu) mà hiện nay đang áp dụng rộng rãi trong công nghiệp xi măng. Quá trình trao đổi nhiệt xẩy ra trong chuyển động giữa dòng liệu và khí nóng theo nguyên tắc ng−ợc chiều nhau ở trạng thái tầng sôi. Diện tích bề mặt lớn của bột liệu trong tháp trao đổi nhiệt tạo điều kiện cho quá trình trao đổi nhiệt thực hiện đ−ợc nhanh và mạnh hơn. Thời gian để lắng các hạt bột liệu trong các xiclôn tháp trao nhiệt sẽ giảm tỉ lệ thuận với bình ph−ơng đ−ờng kính của chúng. Trong khi đó buồng phân huỷ có tác dụng một mặt làm giảm đáng kể chiều dài lò quay, mặt khác làm tăng năng suất tối đa của lò quay trên cơ sở thực hiện quá trình phân huỷ cácbônát của các thành phần bột liệu đạt tới ( 92 – 95) %. Tháp trao đổi nhiệt 2 nhánh, 5 tầng với buồng phân huỷ: 15
  18. Bảng 1.3 Tháp trao đổi nhiệt Tầng Đ−ờng kính, m áp suất, mm Wg 1 5,2 95 2 5,2 67 3 5,4 68 4 5,4 75 5 5,4 60 Buồng phân huỷ: D 7,2 m x H 26 m, thời gian l−u: 5 giây Quạt ID: 10.600 m3/phút, 850 mm Wg, 2.223 Kw. - Quá trình nung tạo thành clanhke đ−ợc thực hiện trong lò quay ngắn (so với ph−ơng pháp −ớt) có 3 gối đỡ, độ nghiêng 4%, độ nghiêng này là một trạng thái trung hoà lý t−ởng giữa vận tốc lò nung, mức tiêu thụ điện năng và loại trừ sự trào ng−ợc lại. Trong công nghiệp xi măng, lần đầu tiên kỹ s− Frideric Penx sử dụng lò quay để nung clanhke. Ban đầu Bằng phát minh về lò quay của ông với tên gọi “ Hoàn thiện thiết bị sản xuất xi măng” đ−ợc cấp ở Anh số 5442 ngày 2/5/1885 và sau đó đ−ợc cấp bằng phát minh ở Mỹ số 340357 ngày 20/4/1886. Trong buồng phân huỷ và lò quay sử dụng các hệ thống vòi phun đa kênh để đốt các loại nhiên liệu khác nhau nh− khí gaz, dầu và than đá.Lò quay 3 gối đỡ: D 4,55 m x L 71 m, t−ơng ứng thể tích lò 96 m3 và tải trọng lò khoảng 4,2 tấn Clanhke/24 h/m3. Nhiên liệu để đốt ở buồng phân huỷ và lò nung là 100% than cám 3A + 4A chất bốc thấp có sẵn ở Việt Nam. Tiêu tốn nhiên liệu là 730 Kcal/kg Clanhke. Tỷ lệ nhiên liệu đốt ở lò nung là (40 – 45)%, ở buồng phân huỷ (55 – 60)% và việc điều chỉnh tự động tỷ lệ nhiên liệu sẽ duy trì khoảng nhiệt độ làm việc không đổi trong các xiclôn nhằm ổn định chế độ nhiệt của lò nung - Máy lạnh là loại máy lạnh kiểu ghi 3 bậc, diện tích 98,6 m2, công suất 4.000 T/24h. Khối l−ợng khí lạnh sử dụng là 3,1 kg/kg Clanhke. Clanhke ra khỏi dôn nung ở nhiệt độ khoảng 1.2000 C đ−ợc làm lạnh bằng máy làm lạnh clanhke kiểu ghi 2- 3 bậc. Cuối máy làm lạnh bố trí 1 thiết bị đập kẹp hàm, bảo đảm cho kích th−ớc clanhke ra khỏi máy làm lạnh khoảng 25 mm và nhiệt độ khoảng 650C trên nhiệt độ môi tr−ờng. 16
  19. Trong tháp trao đổi nhiệt, buồng phân huỷ và ở các dôn phản ứng toả nhiệt, dôn nung và dôn làm nguội của lò quay và máy lạnh làm việc ở chế độ nhiệt độ cao đều phải đ−ợc lót bằng các loại gạch chịu lửa cao nhôm và gạch chịu lửa kiềm tính khác nhau. 1.5.2.9. Nghiền than Khác với các loại nhiên liệu dầu hoặc khí gaz, than antraxit là nhiên liệu ở dạng rắn và cở hạt còn thô cho nên bắt buộc phải nghiền mịn và độ ẩm đạt yêu cầu mới có thể sử dụng đ−ợc. Hiện nay các nhà máy xi măng mới xây dựng gần đây đều bố trí thiết bị nghiền tiên tiến, hiện đại là máy nghiền đứng con lăn để nghiền than. Trong thiết bị này than antraxit đ−ợc nghiền mịn, sấy và phân ly. Than thô đ−ợc cấp vào máy ngiền đứng con lăn và đ−ợc nghiền mịn giữa các con lăn và bàn nghiền. Tác nhân sấy là khí thải từ máy làm lạnh clanhke. Hệ thống nghiền than đ−ợc trang bị chống cháy, chống nổ và than mịn sau khi nghiền đ−ợc chứa trong 2 két than mịn cấp cho hệ thống vòi phun của lò quay và buồng phân huỷ. Công suất các máy nghiền đứng con lăn nghiền than là 30 tấn/h và 40 tấn/h, mô tơ 710 Kw. Máy phân li, mô tơ 138 Kw. Quạt máy nghiền đứng con lăn: 2.740 m3/phút, 998 mm Wg, mô tơ: 610 Kw. Độ mịn than sau khi nghiền < 5% trên sàng 009, độ ẩm <1%. Quá trình cấp than và đốt than ở buồng phân huỷ và lò nung đều đ−ợc tự động hoá trên cơ sở nhiệt độ, hàm l−ợng khí CO, NOx đ−ợc khống chế chặt chẽ theo quy định. Để bảo đảm an toàn tuyệt đối chống cháy, nổ, công đoạn nghiền than đ−ợc trang bị các thiết bị an toàn gồm bộ phân tích khí CO , đo hàm l−ợng O2 và hệ thống cung cấp khí CO2 và khí trơ. 1.5.2.10. Nghiền xi măng Trong các nhà máy xi măng Hoàng thạch, Hà tiên công đoạn nghiền xi măng đ−ợc thực hiện theo công nghệ truyền thống nghiền 1 cấp trong máy nghiền bi. Nghiền xi măng là 1 trong những công đoạn tiêu tốn nhiều điện năng nhất. Do vậy nhằm tiết kiệm điện năng khi nghiền xi măng, trong các nhà máy xi măng đầu t− xây dựng sau năm 1997 tới nay (Chinfong, Bút sơn, Hoàng mai, Tam điệp) đều bố trí nghiền xi măng chu trình kín theo công nghệ tiên tiến nghiền 2 cấp đã đ−ợc áp dụng rộng rãi trong công nghệ nghiền xi măng trên thế giới: - Cấp 1 nghiền sơ bộ xi măng bằng máy nghiền đứng con lăn từ kích th−ớc 25 mm tới kích th−ớc hạt khoảng 1mm. - Cấp 2 nghiền kết thúc xi măng trong máy nghiền bi từ kích th−ớc cấp vào 1 mm tới độ mịn xi măng yêu cầu 3.200 cm2/g. 17
  20. Trong các hệ thống nghiền xi măng này đều bố trí máy phân ly hiệu suất cao. Nhiệt độ xi măng sau khi nghiền 800 C. Riêng nhà máy xi măng Sao mai đã sử dụng 2 máy nghiền đứng con lăn LM 46, công suất 100 tấn/h để nghiền hỗn hợp clanhke và thạch cao ở nhà máy tại Hòn chông, sau đó vận chuyển về trạm Cát lái trộn với phụ gia đã nghiền sẵn thành các loại xi măng yêu cầu. Công suất các dây chuyền công nghệ nghiền xi măng 2 cấp 240 tấn/h gồm máy nghiền sơ bộ đứng con lăn, môtơ 1.400 Kw và máy nghiền bi, môtơ 6.013 kw. 1.2.11. Đóng bao và xuất xi măng Nhà máy đ−ợc trang bị hệ thống đồng bộ từ đóng bao đến xuất xi măng bao theo tuyến ôtô và tàu hoả. Với 4 máy đóng bao loại 8 vòi, 8 thiết bị xuất xi măng bao theo tuyến đ−ờng bộ và 4 thiết bị xuất xi măng bao theo tàu hoả, công suất mỗi thiết bị là 2.400 bao/h có khả năng đóng bao và xuất 100% xi măng bao theo tuyến ôtô hoặc tầu hoả. Đồng thời nhà máy có khả năng xuất xi măng rời cho ôtô theo 2 tuyến với công suất 100 T/h cho mỗi tuyến. Nh− vậy khả năng đóng bao và xuất xi măng bao, xi măng rời của nhà máy rất linh hoạt nhằm bảo đảm khả năng xuất hàng theo các yêu cầu vận tải. 1.5.2.12. Bảo vệ môi tr−ờng Tất cả các thiết bị đập, nghiền, phân ly tạo nhiều bụi hoặc các thiết bị vận chuyển, đ−ờng ống bơm vật liệu, bột than v.v đều đ−ợc làm kín để tránh bụi toả ra xung quanh. Tại các vị trí chuyển đổi đổ nguyên liệu cuối băng tải, gầu nâng, xilô v.v đều bố trí lọc bụi túi kiểu mới hiệu suất cao phù hợp với khí hậu nóng ẩm của Việt nam. Khí thải máy nghiền, lò nung đều đ−ợc khử bụi bằng lọc bụi tĩnh điện có hiệu suất lọc đạt < 50 mg/Nm3 tr−ớc khi thải ra môi tr−ờng. Việc sử dụng tháp trao đổi nhiệt 5 tầng và buồng phân huỷ kiểu mới, cũng nh− vòi phun đa kênh hiệu suất cao bảo đảm hạn chế việc phát sinh các khí có hại nh− NOx, COx. Đồng thời nhằm hạn chế tiếng ồn trang bị các thiết bị tiêu âm, vật liệu các âm và những nơi có tiếng ồn cao nh− đập đá vôi, đá sét, nghiền xi măng đ−ợc bố trí trong các nhà đặc biệt có t−ờng ngăn. 1.5.2.13. Hệ thống điều khiển tự động sản xuất Trong các nhà máy xi măng sản xuất theo ph−ơng pháp khô hiện nay, toàn bộ quá trình vận hành của dây chuyền công nghệ sản xuất xi măng đ−ợc điều khiển tự động từ phòng điều khiển trung tâm. Hệ thống điều khiển tự động hoá của nhà máy từ 18
  21. khâu kiểm tra, đo l−ờng, xử lý thông tin, điều chỉnh và điều khiển hoạt động toàn bộ dây chuyền công nghệ sản xuất xi măng gồm các mức: - Mức 1 gồm các cơ cấu chấp hành nh− động cơ, van, thioết bik đo l−ờng,thiết bị biến đổi tín hiệu, các bộ điều khiển v.v - Mức 2 là hệ thống điều khiển quá trình sản xuất nh− các máy tính vận hành, các bộ điều khiển logic lập trình v.v - Mức 3 là các hệ thống đặc biệt nh− hệ thống giám sát thành phần phối liệu, hệ thống quét nhiệt độ võ lò, hệ thống tối −u hoá, hệ thống thiết kế, hệ thống thông tin quản lý và hệ thống truyền hình công nghiệp. Trên đây giới thiệu tóm tắt toàn bộ dây chuyền công nghệ tiên tiến sản xuất xi măng theo ph−ơng pháp khô đang đ−ợc áp dụng trong các nhà máy sản xuất xi măng của Việt nam hiện nay. Trong đó các thiết bị sản xuất chính từ đập đá vôi tới xuất xi măng và hệ thống điện, tự động hoá đều đ−ợc cung cấp từ các nhà chế tạo thiết bị xi măng nỗi tiếng thế giới nh− FLSmidth, Fuller, Polysius, Pfeifer, Bedeschi, Loesche, ABB, Haver- Boecker v.v Trong bảng 23 d−ới đây giới thiệu nguồn xuất xứ một số thiết bị chính trong các nhà máy xi măng lò quay hiện có ở Việt nam hiện nay. Bảng 1.4. Xuất xứ của một số thiết bị chính trong các nhà máy xi măng lò quay ở Việt nam hiện nay Danh mục các thiết bị chính Hãng cung cấp thiết bị 1. Máy đập va đập – hắt FLS, PSP, Krupp Polysius, Pfeiffer 2. Máy đập răng 2 trục Bedeschi 3.Máy đánh đống đá vôi FLS, Bedeschi 4.Máy rút đá vôi FLS, MVT 5.Máy đánh đống đá sét FLS, MVT, Marchin/Hashimoto 6. Máy rút đá sét FAM, FLS, MVT 7. Máy nghiền đứng con lăn (liệu) UBE, Loesche, FLS, Pfeiffer 8. Xilô đồng nhất BMH, IBAU, FLS, CPAG 9. Tháp trao đổi nhiệt MHI, Kobe, FLS, Onoda 10. Lò quay MHI, IKK, FLS, Kobe, Fuller, FCB, Polysius 11. Máy làm lạnh clanhke BMH, IKK, FLS, CPAG 12. Máy nghiền đứng con lăn (than) FLS, Loesche, UBE 13. Máy nghiền đứng con lăn (sơ bộ) xi MHI, Loesche, Kawasaki, UBE măng 19
  22. 14. Máy nghiền bi xi măng FLS, MHI, UBE, FCB, Polysius 15. Máy đóng bao xi măng Ventomatic, Haver & Boecker 16. Lọc bụi tĩnh điện Elex, FLS Miljo 17. Hệ thống điều khiển quá trình Siemens, FLS, MHI, ABB 1.5.3. Thiết bị công nghệ Nhà máy xi măng đ−ợc trang bị hệ thống thiết bị đồng bộ phù hợp với dây chuyền sản xuất và phù hợp công suất của lò quay là 4.000 tấn Clanhke/ngày. Hệ thống thiết bị công nghệ đồng bộ gồm: a/ Hệ thống thiết bị trong dây chuyền công nghệ sản xuất chính Hệ thống thiết bị trong dây chuyền công nghệ sản xuất chính giới thiệu ở bảng 24. Bảng 1.5. Thiết bị trong dây chuyền công nghệ sản xuất chính Số hiệu Thiết bị hạng mục - Thiết bị chính 131 Máy đập đá vôi 133 Máy đập đá sét 141 Băng tải vận chuyển đá vôi tới kho 143 Băng tải vận chuyển đá sét tới kho 151 Kho đá vôi 153 Kho đá sét 222/224 Tiếp nhận , đập thạch cao, phụ gia , vận chuyển vào kho pirit, thạch cao, phụ gia và than 331 Cấp liệu máy nghiền liệu 341 Máy nghiền liệu 361 Xilô CF và cấp liệu lò 421 Tháp trao đổi nhiệt 431 Lò nung 441 Máy làm lạnh 471 Vận chuyển Clanke tới kho 461 Máy nghiền than 20
  23. 481 Xilô Clanke 521 Vận chuyển Clanke từ kho 541 Máy nghiền xi măng 551 Vận chuyển xi măng 621 Xilô xi măng 641 Máy đóng bao và xuất xi măng 731 Phòng điều khiển trung tâm 771 Phòng thí nghiệm 738 Hệ thống vận chuyển mẫu thí nghiệm - Hệ thống thiết bị phụ trợ 741 Hệ thống khí nén 751 Hệ thống dầu 761 Trạm xử lý n−ớc 762 Trạm xử lý n−ớc thải - Hệ thống thiết bị phục vụ 810 X−ởng sửa chữa cơ khí 820 X−ởng sửa chữa xe máy 830 X−ởng sửa chữa điện, điện tử 840 Kho vật t− 841 Kho vật liệu chịu lửa 842 Kho dầu mỡ 871 Cầu cân b/ Hệ thống kỹ thuật điện, điều khiển tự động và đo l−ờng Toàn bộ dây chuyền sản xuất trong nhà máy đ−ợc cơ khí hoá toàn bộ kết hợp tự động hoá ở mức độ cao. Việc điều khiển tự động hoá đ−ợc thực hiện tại phòng điều khiển trung tâm. c/ Phụ tùng thay thế Trong các nhà máy xi măng công suất lớn th−ờng có 1 khối l−ợng phụ tùng thay thế cho 2 năm vận hành sản xuất. 21
  24. 1.6. Tình hình nội địa hoá thiết bị sản xuất của các nhà máy xi măng lò quay 1.6.1. Tình hình nội địa hoá thiết bị sản xuất xi măng của một số nhà máy xi măng lò quay đã xây dựng ở Việt nam Tình hình nội địa hoá thiết bị sản xuất xi măng của một số nhà máy xi măng lò quay đã xây dựng ở Việt nam giới thiệu ở bảng 25. Bảng 1.6. Tình hình nội địa hoá thiết bị sản xuất xi măng của một số nhà máy xi măng lò quay TT Tên nhà máy Địa điểm xây Công suất, Tổng Đã Tỷ lệ dựng tấn trọng l−ợng chế tạo nội địa clanhke/ thiết bị , tấn trong n−ớc, hoá (%) ngày tấn 1 Nhà máy xi măng Kinh Môn 3.300 9.984 2.016 20,2 Hoàng Thạch II Hải H−ng 2 Nhà máy xi măng Kim Bảng Hà 4.000 16.545 5.100 30,8 Bút Sơn Nam 3 Nhà máy xi măng Tam Điệp 4.000 16.121 5.669 35,2 Tam Điệp Ninh Bình 4 Nhà máy xi măng Nghi sơn 5.800 28.000 13.000 46,4 Nghi Sơn Thanh Hoá 1.6.2. Tình hình nội địa hoá các nhóm thiết bị sản xuất của một nhà máy xi măng công suất 4.000 tấn clanhke/ngày ở Việt nam 1.6.2.1. Tình hình nội địa hóa của từng nhóm thiết bị sản xuất Tình hình nội địa hóa của từng nhóm thiết bị sản xuất giới thiệu trong bảng 26. Bảng 1.7. Tình hình nội địa hóa của từng nhóm thiết bị sản xuất TT Nhóm thiết bị Số Tổng Đã nội Tỷ lệ đã l−ợng trọng l−ợng, địa hoá, nộiđịa tấn tấn hoá, % 1 Băng tải cao su 57 1.352,6 744,9 55,1 2 Cấp liệu tấm và băng tải xích 8 245,8 54,5 22,2 22
  25. 3 Gầu nâng 9 491,4 332 67,5 4 Vít tải 17 37,8 14,6 38,7 5 Máng khí động 27 53,8 48,3 89,7 6 Palăng (23 bộ ), cầu trục (7 bộ ) 30 113,6 41,1 36,2 7 Lọc bụi , quạt gió 60 1.626,2 1070,6 65,8 8 Vật liệu bảo ôn 369 0 0 9 Thiết bị phi tiêu chuẩn còn lại 2.767,5 2.767,5 100 10 Các thiết bị chính* (không kể động cơ ) 4.122,7 593,7 14,4 11 Gạch chịu lửa cao nhôm 1.445,5 0 0 12 Gạch chịu lửa kiềm tính 1.200 0 0 13 Động cơ điện các loại 191 136,7 0 0 14 Các trạm biến áp ,tủ phân phối. 432,3 0 0 15 Cáp điện các loại, giá cáp, ống luồn cáp, 663,9 0 0 nối đất , chống sét 16 Chiếu sáng, thông gió, điều hoà, báo 147,4 0 0 cháy, cảnh báo 17 Hệ thống điều khiển tự động hoá gồm : -HT điều khiển qúa trình 20 0 0 -HT lấy mẫu khí, mật độ bụi 7,8 0 0 -HT điều khiển lò,làm nguội, nghiền, 0,56 0 0 theo dõi gạch chịu lửa -HT thí nghiệm, lấy mẫu, kiểm soát 6,3 0 0 phối liệu. 18 Hệ thống thông tin nội bộ 4,1 0 0 19 Cân ô tô 0,5 0 0 20 Thiết bị khí nén 3,95 0 0 21 Thiết bị cấp dầu 173,2 0 0 22 Thiết bị xử lý n−ớc cấp 103,2 0 0 23 Thiết bị xử lý n−ớc thải 2 0 0 24 X−ởng cơ khí 47,8 0 0 25 X−ởng sửa chữa xe máy 11,6 0 0 26 Xe cần trục, xe xúc lật trong nhà máy 104 0 0 27 Thiết bị cứu hoả (ô tô chữa cháy, bơm) 95,9 0 0 23
  26. 28 Thiết bị cho kho, dụng cụ khác 7,6 0 0 29 Các thiết bị khác: Van các loại, bộ chỉ 211 0 0 thị mức 30 Các vật liệu khác: Sơn, thép nêm, bu 115,9 0 0 lông các loại, que hàn Cộng 16.121 5.669 35,2% *Ghi chú: Nhóm các thiết bị sản xuất chính của nhà máy xi măng công suất 4.000 tấn clanhke/ngày gồm: 1. Máy đập đá vôi (kiểu impact), 600 t/h. 2. Máy cán 2 trục, 300 t/h. 3. Máy đánh đống kho đá vôi, 600 t/h 4. Cầu rút liệu kho đá vôi, 300 t/h. 5. Máy rải liệu kho đất sét, 300 t/h 6. Cầu rút liệu, 140 t/h. 7. Các loại cân băng định l−ợng 8. Máy nghiền đứng con lăn (nghiền liệu), 320 t/h 9. Lò nung 4.000 tấn clanhke./ngày, tháp trao đổi nhiệt, buồng phân huỷ. 10. Máy làm lạnh clanhke kiểu ghi, 4.000 t/ngày 11. Băng gầu thép vận chuyển clanhke, 250 t/h: 12. Máy nghiền đứng con lăn (nghiền sơ bộ xi măng), 240 t/h. 13. Máy nghiền bi xi măng 240 t/h. 14. Máy đóng bao xi măng 100 t/h. 15. Máy nghiền đứng con lăn (nghiền than), 30 t/h 16. Xi lô đồng nhất 20.000 tấn. 1.6.2.2. Mô tả các phần của thiết bị sản xuất đã đ−ợc nội địa hoá và đang nhập ngoại Mô tả các phần của thiết bị đã đ−ợc nội địa hoá và đang nhập ngoại đ−ợc giới thiệu ở bảng 27. 24
  27. Bảng 1.8. Mô tả các phần của thiết bị đ∙ đ−ợc nội địa hoá và đang nhập ngoại TT Thiết bị Phần chế tạo trong n−ớc Phần nhập ngoại Băng tải cao su Khung băng, đối trọng, vỏ che -Puly, hộp số, động cơ, 1 băng, gối đỡ, giá đỡ con lăn, các băng, con lăn, Pulycăng, nắp bảo vệ, căng băng, các kết cấu tấm đế, phanh, vòng bi, cơ thép khác cấu làm sạch băng, cơ cấu dừng khẩn cấp Khung băng, vỏ che băng, các nắp -Puly, Hộp số, Động cơ, 2 Cấp liệu tấm và bảo vệ, các kết cấu thép khác Băng, con lăn, tấm đế, cơ băng tải xích cấu đảo chiều, vòng bi, cơ cấu dừng băng, xích, gối đỡ con lăn, hệ thống bôi trơn 3 Gầu nâng Giá đỡ, thân gầu, gầu, các nắp bảo -Puly, Hộp số, Động cơ, vệ, các kết cấu thép khác Băng, xích, tang dẫn động Giá đỡ, vỏ, ruột vít bao gồm cánh -Khớp nối, Hộp số, động cơ, 4 Vít tải và trục, các kết cấu thép khác gối đỡ trung gian, vòng bi, hệ thống bôi trơn 5 Máng khí động Giá đỡ, vỏ, vòi thổi khí, vòng làm -Quạt gió, Động cơ, vải kín, các kết cấu thép khác Polyester 6 Palăng (23 bộ), cầu Dầm cầu trục, xe con, các kết cấu -Toàn bộ phần còn lại của trục (7 bộ) thép khác palăng và cầu trục Vỏ, Giá đỡ, các nắp bảo vệ, các kết -Toàn bộ phần còn lại: Điện 7 Lọc bụi, quạt gió cấu thép khác (Thang, ống nối ) cực, cao áp, túi vải, hệ thống khí nén, điều khiển, các loại van 8 Các thiết bị chính Khung vỏ, giá đỡ, hộp. Toàn bộ phần còn lại. 1.7. Phát triển sản xuất xi măng của Việt nam tới năm 2010 ở n−ớc ta trong lĩnh vực sản xuất xi măng đã v−ơn lên tiếp cận trực tiếp với những công nghệ sản xuất xi măng tiên tiến của thế giới. Trong những năm gần đây một số nhà máy xi măng (kể cả liên doanh) đã đ−ợc xây dựng theo công nghệ sản xuất tiên tiến ph−ơng pháp khô với dây chuyền công nghệ 1 lò quay công suất lớn từ 4.000 tấn tới 5.800 tấn clanke/ngày (Chinfong, Bút sơn, Sao mai, Nghi sơn, Hoàng mai, Tam điệp). Trong các nhà máy này đều sử dụng hệ thống tháp trao đổi nhiệt 2 nhánh 5 tầng xiclon 25
  28. và lò quay với buồng phân huỷ đốt bằng 100% than cám chất bốc thấp của Quảng ninh. Các thiết bị công nghệ chủ yếu nh− máy nghiền đứng con lăn nghiền liệu và nghiền than, xilô đồng nhất, máy lạnh kiểu ghi , máy nghiền đứng con lăn nghiền sơ bộ kết hợp với máy nghiền bi nghiền kết thúc xi măng đều đ−ợc trang bị trong các nhà máy trên. Quá trình sản xuất đều đ−ợc điều khiển tự động từ phòng điều khiển trung tâm. Xi măng Việt nam hiện đang có −u thế hơn hẳn các n−ớc ASEAN là nhu cầu tiêu thụ xi măng của thị tr−ờng nội địa rất lớn và ngày mỗi gia tăng. Theo Quyết định số 115/2001/QĐ - TTg ngày 01 tháng 8 năm 2001 của Thủ t−ớng Chính phủ phê duyệt Quy hoạch tổng thể phát triển ngành công nghiệp Vật Liệu Xây Dựng Việt nam đến năm 2010 thì nhu cầu xi măng năm 2005 là 24 triệu tấn/năm và năm 2010 là 37 triệu tấn/năm, trong khi đó công suất thiết kế của toàn ngành xi măng Việt nam đến năm 2000 mới đạt 19,70 triệu tấn/năm. Do vậy nền công nghiệp xi măng Việt nam đang có nhu cầu đầu t− phát triển rất lớn, nếu không thực hiện kịp thời các dự án đầu t− xi măng ngay từ bây giờ thì hàng năm n−ớc ta sẽ phải nhập khẩu một khối l−ợng xi măng rất lớn. Về công nghệ sản xuất, trong bản Quy hoạch cũng chỉ rõ cần phải kết hợp và nhanh chóng tiếp thu công nghệ tiên tiến, thiết bị hiện đại của thế giới với thiết bị chế tạo trong n−ớc để sớm có đ−ợc nền công nghệ, thiết bị tiên tiến và hiện đại, tự động hoá ở mức cao, bảo đảm cho sản phẩm xi măng và bảo vệ môi tr−ờng đạt tiêu chuẩn quốc tế. Theo dự báo năm 2002 nhu cầu tiêu thụ xi măng trong n−ớc khoảng 18 triệu tấn (tăng 11,2% so với năm 2001), do vậy cân đối giữa nguồn sản xuất với nhu cầu tiêu thụ xi măng, Bộ Xây dựng đã đề nghị và đ−ợc Thủ t−ớng Chính phủ cho phép nhập khẩu 2 triệu tấn clanhke. Vừa qua ngày 2 tháng 5 năm 2002, sau khi thống nhất ý kiến với Bộ Th−ơng mại và các cơ quan liên quan, Bộ Xây dựng vừa có văn bản đề nghị Thủ t−ớng Chính phủ cho phép trong năm 2002 nhập thêm 1 triêụ tấn clanhke. Để đáp ứng cho nhu cầu xi măng đang ngày mỗi tăng nh− nêu trên, từ nay tới năm 2010 một số nhà máy xi măng lò quay mới có công suất lớn sẽ đ−ợc đầu t− xây dựng ở Việt nam đ−ợc giới thiệu ở bảng 28. Với 11 dự án xây dựng nhà máy xi măng lò quay mới (tổng công suất thiết kế 16,5 triệu tấn xi măng/năm) sẽ đ−ợc đầu t− xây dựng nh− trên, một khối l−ợng thiết bị sản xuất xi măng khổng lồ sẽ đ−ợc lắp đặt trong các nhà máy xi măng này. Trong đó một khối l−ợng không nhỏ các thiết bị cũng sẽ đ−ợc chế tạo trong n−ớc, nhằm tiết kiệm ngoại tệ nhập khẩu, giảm suất đầu t− cho các nhà máy xi măng. Đây là một cơ hội to lớn, mở ra một h−ớng mới phát triển chế tạo thiết bị sản xuất xi măng lò quay, đồng 26
  29. thời cũng là một thách thức rất lớn cho ngành cơ khí chế tạo của đất n−ớc ta. Đáp ứng đầy đủ khối l−ợng và chất l−ợng phần thiết bị chế tạo trong n−ớc này sẽ chứng tỏ năng lực và sự tr−ởng thành v−ơn lên nhanh chóng của đội ngũ công nhân, kỹ s−, cán bộ ngành cơ khí chế tạo của chúng ta. Bảng 1.9. Danh mục các dự án xây dựng nhà máy xi măng lò quay tới năm 2010 Tên nhà máy Công suất xi măng, Chủ đầu t− Địa điểm triệu tấn/năm 1. Nhà máy xi măng Thái 1,4 Tổng công ty xây Võ nhai, nguyên dựng Công nghiệp Thái nguyên Việt nam 2. Nhà máy xi măng Hạ long 2,0 Tổng Cty Sông Đà Hoành bồ, Quảng ninh 3. Nhà máy xi măng Thăng 2,2 Cty xây lắp, XNK Hoàn cầu, long vật liệu & Kthuật Quảng ninh XD; Bảo Việt; Cty XNK tổng hợp HN 4. Nhà máy xi măng sông 1,4 Tổng Cty xây dựng Quảng trạch, Gianh miền Trung Quảng bình 5. Nhà máy xi măng Thanh 2,0 Công ty xi măng Thanh long, long Hà tiên 1 Bình ph−ớc 6. Nhà máy xi măng Quảng trị 0,8 Tổng công ty Cam lộ, xây dựng Hà nội Quảng trị 7. Nhà máy xi măng Quang 2,3 Tổng công ty xuất Quang hanh, hanh nhập khẩu xây Quảng ninh dựng (Vinaconex) 8. Nhà máy xi măng Hoàng 1,4 Tổng công ty lắp Kim môn, thạch III máy (Lilama) Hải d−ơng 9. Nhà máy xi măng Sơn la 0,6 Tỉnh Sơn la Hát lót, Sơn la 27
  30. 10. Nhà máy xi măng Phúc 1,8 Liên doanh giữa Hải d−ơng sơn Cty World Cement- Đài loan với Cty xi măng Hải d−ơng và NH Công th−ơng Việt nam 11. Nhà máy xi măng Phú thọ 0,6 Tỉnh Phú thọ Phú thọ 28
  31. Kết luận và kiến nghị Đề tài “ Nghiên cứu thiết kế chế tạo hệ thống thiết bị phụ tùng cho công nghiệp xi măng lò quay 1,4 triệu tấn năm.” đã đạt đ−ợc những mục tiêu đề ra, đã tạo ra các sản phẩm bao gồm : - Các nghiên cứu tổng quan về các thiết bị nh− máy nghiền đứng, thiết bị phân ly, thiết bị kho đồng nhất sơ bộ, quạt, lọc bụi tĩnh điện đ−ợc áp dụng trong công nghiệp sản xuất xi măng - Xây dựng các ph−ơng pháp tính toán các thông số công nghệ, tính toán thiết kế các thiết bị trên. - Thực hiện thiết kế 8 thiết bị , bao gồm cả phần thiết kế phần điều khiển tự động, xây dựng công nghệ chế tạo. - Chế tạo một hệ điều khiển lọc bụi tĩnh điện (1tr−ờng) bao gồm hệ điều khiển theo ch−ơng trình và tủ điện - Chế tạo 1bộ nguồn cao áp có điều khiển của lọc bụi tĩnh điện bao gồm biến thế cao áp, bộ chỉnh l−u và điều khiển chỉnh l−u. - Chế tạo 12 tấn phụ tùng cho máy ngiền đứng Bộ điều khiển cao áp cùng bộ nguồn sau khi chế tạo đã đ−ợc thử nghiệm tại nhà máy xi măng Lạng sơn và đã hoạt động tốt. Phụ tùng cho máy nghiền đứng đ−ợc chế tạo đ−ợc kiểm nghiệm tại nhà máy và đã đ−ợc chuyển tới nhà máy xi măng Hoàng thạch để thử nghiệm. Qua quá trình khảo sát thực hiện đề tài cũng nh− tham gia vào việc chế tạo các thiết bị t−ơng tự nh− sản phẩm của đề tài, trên nhóm tác giả có thể khẳng định việc thiết kế, chế tạo phần lớn các sản phẩm của đề tài có thể thực hiện trong n−ớc. Việc chế tạo trong n−ớc sẽ góp phần phát triển ngành cơ khí chế tạo nói chung và cơ khí chế tạo thiết bị phụ tùng xi măng trong n−ớc, tiết kiệm ngoại tệ. Các kết quả nghiên cứu của đề tài sẽ là tài liệu cho việc thiết kế, chế tạo . Tuy nhiên vì hầu hết sản phẩm của đề tài là những thiết bị có giá trị lớn, phức tạp và là những thiết bị chủ chốt trong các công đoạn công nghệ của nhà máy cho nên việc chuyển tứ nghiên cứu thiết kế sang chế tạo cần có nghiên cứu thực nghiệm thiết bị cũng nh− các cơ cấu, hỗ trợ trong việc đ−a áp dụngvào thực tế. Đề tài này đã đ−ợc hoàn thành trong khuôn khổ ch−ơng trình KC06. Tr−ớc hết nhóm tác giả xin chân thành cảm ơn Bộ KHCN và nhất là Ban Chủ nhiệm ch−ơng 29
  32. trình KC06 đã tạo mọi điều kiện, giúp đỡ chúng tôi trong việc thực hiện đề tài này. Chúng tôi cũng xin cám ơn nhà máy Xi măng Lạng sơn, Công ty xi măng Hoàng thạch, Bỉm sơn cũng nh− Công ty xi măng Bút sơn, Hoàng mai, Kiên l−ơng giúp đỡ chúng tôi trong quá trình khảo sát, thử nghiệm tại các cơ sở trên. 30
  33. Tài liệu tham khảo 1. Dự án điều chỉnh qui hoạch phát triển công nghiệp xi măng ở Việt nam đến năm 2010 và định h−ớng đến năm 2020. Bộ Xây dựng. Viện Khoa học Công nghệ Vật liệu Xây dựng 4/2005 2. Những chính sách kinh tế vĩ mô điều chỉnh phát triển công nghiệp xi măng Trung Quốc. Bộ Xây dựng. Trung tâm tin hoc số 3/2004 3. Atox Raw Mill; Fuller Roller Mill; OK Verticall Roller Mill; Atox Coall Mill; Stacker and Reclaimer Systems brochures for preliminary project planning from www.flsmidth.com 4. Sarren Worre Jorgensen “ Verticall Roller Mill for Grinding of Cement and Slag” Cemento-Hormigon N0 144 11/2002 5. Sarren Worre Jorgensen; F.L.Smidth &Co. A/S; Denmark “LV Technology Optimises Verticall Roller Mill” Cemento-Hormigon N0 135 4/2001 6. Erik Birch; F.L.Smidth &Co. A/S; Denmark and Brian P.Keefe “Experience with the OK Roller Mill” Asian Cement and Construction Material Magazin N0 121 9/1998 7. Robert T.Wehr “Roller Mill Sussesses of the 1990s” Cement Review Magazin N0 126 4/1999 8. Kawasaki Heavy Industries LTD “CK Roller Mill”; CKP Mill (Kawasaki Pregrinding Systems) 9. “Roller Gringding Technology by Kawasaki Heavy Inducstries” International Conference on advanced Technology for Cement Inducstry in Hanoi 11/2002 10. Raw Material Grinding Quadropol from WWW.Polysusa.com 11. Loesch Roller Mill for Cement and Blast Furnace Slag 6/1995 12. Separator type RAKM – Instruction F.L. Smidth 13. Advanced Mill Technology. Cetec 2000-20001 14. Erection Manual – Claystacker 250/14.5 15. Erection Manual – Bridge reclaimer LHO 150/22.5 16. SIMATIC S7-400 System, Technical Documentation, Siemens.2001 17. SIMATIC driver, Technical Documentation, Siemens.2001 18. SIMATIC Total Integrated Automation,Siemens,2001 19. Robert N, Bateson, “Introduction to Control System Technology” Maxwell- Macmililan Inter.Edition, USA, Newjork,1996 31
  34. 20. Sapoznhikov M. IA. Mekhanhitreskoe oborudovonhie dlia proizvodstva stroitelnukh materialov I izdelia. Mashgiz 1962 21. Sapoznhikov M. IA. Drozdov N.E. Spravochnhic po oborudovanhiu zavodov strpitelnukh materialov. Gostroiizdat. 1959 22. Bokshtein S. IA. Morgulie M. L. Vozdushn−e Klassiphikator−, primenhiaemue v promushlennosti stroitelnux materialov. Zbornhix No2, VNHII stroimash, 1964 23. Banhit Ph. g. maltrin a. d puleulavlivanhie i otristka gazov v promushlennosti stroitelnux materialov. 1967. 24. Noel de Wet “Homogenizing/Blending in South Africa- An Apdate” Bulk Solids Handling 1/1994 25. G. Fischer “ Portal Bridge Scraper Reclaimer for multi-purpose blending Bed Stores”. ZKG Internatianal 26. G. Fischer “ Power Station Coal Yard Using Scraper Reclaimer – 25 Years of Experience” VGB Kraftwerkstechnik. Volume 7. N0 10. 10/1997 27. G. Fischer “ Circular Storage Yard for Bulk Materials”. Volume 19. N0 2. Bulk Solids Handling 4-6/1999 28. Performances – SCHADE. AUMUND Group OK vertical roller mill 29. A. D. Bruk và các tg khác: Sentrobezn−e Ventilator−. Chịu trách nhiệm xuất bản: T. S. Solomakhova. Moscova Mashinostroenie, 1975 30. Ing. Dr. Techn. O. Back. Ventilatoren Entwurf und Berechnung, Halle 1955. Bản dịch tiếng Nga. 31. Dr. Ing. Bruno Eck. Fans. Design and operation of Centrifugal, axial- Flow and Cross- flow fans. Pergamon Press. Oxford New York Toronto. Sydney Braun Schweig. 32. Kand. Techn. Nayk Ph. G. Galimzianov. Ventilator−. Atlas Konstruksii. Izdatelstvo "Mashinostroenie", Moscova 1968. 33. Raokhman B. S. Priamaia Zadatra opchekanhia dvuxmernoi reshiotki profilei. Trud− SKTI, V−puskơ 61, 1965. 34. Kanton A. IU., Kazatrkov L. IA. Opchekanhia mnogoriadnoi reshiotki na Osesimmetrichn−x poverkhnochiax toka v sloie peremennoi tolshin−. "Izveschie Vozov Energechika" 1970, N06, Str. 83-89. 32
  35. 35. UJOV V. M và các tác giả khác, Làm sạch bụi khí thải công nghiệp. M.CHIMIA –1981 36. UJOV V. M, Làm sạch khí thải công nghiệp bằng lọc bụi tĩnh điện .M.CHIMIA –1967 37. RUSANOV A. A. Sổ tay lọc bụi và tro bay, M.ENERGIA- 1983 38. IURENEV V. M và LEBEDEV P. D. Sổ tay kỹ thuật nhiệt,M.ENERGIA - 1975 39. ROTHEM⇐HLE , Công nghệ năng l−ợng và môi tr−ờng. Lọc bụi tĩnh điện, APPARATEBAU ROTHEM⇐HLE. GERMANY 40. UJOV V. M và VALDERBERG A. I, Làm sạch bụi khí thải công nghiệp ,M.CHIMIA –1981 41. RUXIN C. A ,Sổ tay các thiết bị thông gió các nhà máy chế tạo máy, M. MASINOSTROENIE – 1964 42. Nguyễn Bính, Điện tử công suất Nhà xuất bản KHKT Hà nội 2001 33
  36. Bộ công nghiệp Viện Máy và Dụng cụ công nghiệp 46 Láng Hạ Đống Đa Hà nội Báo cáo tổng kết khoa học và kỹ thuật Đề tài: Nghiên cứu KHCN cấp Nhà n−ớc M∙ số: KC 06-07 CN Phần: Lọc bụi tĩnh điện ThS. Trần Hồng Lam Hà Nội, 9 - 2004 Bản thảo viết xong 10/2004 Tài liệu này đ−ợc chuẩn bị trên cơ sở kết quả thực hiện Đề tài cấp Nhà n−ớc, mã số KC 06-07 CN
  37. Danh sách những ng−ời thực hiện Họ và tên Chức vụ Học vị Chức danh đề tài Trần Hồng Lam Trung tâm TBCN Thạc sỹ Tự động hoá Chủ nhiệm Nguyễn Vĩnh Kỳ GĐ Trung tâm KTMT Kỹ s− Chế tạo máy Thành viên Đỗ Trọng Bình PGĐ Trung tâm KTMT Kỹ s− Nhiệt Thành viên L−ơng Ngọc Ph−ợng PGĐ Trung tâm KTMT Kỹ s− Tự động hoá Thành viên Trần Văn Sơn Trung tâm TBCN Kỹ s− Nhiệt Thành viên Trần Kim Quế GĐ Trung tâm KM Kỹ s− Đo l−ờng Thành viên Nguyễn Quý Bình GĐ Trung tâm CNC Kỹ s− Chế tạo máy Thành viên Vũ Hoài Nam GĐ Trung tâm TBCN Kỹ s− Chế tạo máy Thành viên D−ơng Hồng Quân Trung tâm DAĐT Kỹ s− Chế tạo máy Thành viên 2
  38. tóm tắt 1. Mục đích của đề tài: Sản xuất xi măng phát sinh ra nhiều bụi nếu không thu hồi thì khi phát tán ra bên ngoài không những gây hiểm hoạ cho môi tr−ờng mà còn gây lãng phí. Để giải quyết tình trạng này các nhà máy xi măng phải nhập các bộ lọc bụi tĩnh điện có giá thành rất cao làm tăng chi phí cho mỗi tấn sản phẩm.Vì vậy việc nghiên cứu, thiết kế thiết bị lọc bụi, đặc biệt là lọc bụi tĩnh điện, trong công nghiệp sản xuất xi măng để sản xuất trong n−ớc là rất cần thiết. Mục đích của đề tài là nhằm giải quyết vấn đề bức xúc đó. 2. Ph−ơng pháp tiếp cận và thực hiện đề tài: Trên cơ sở nghiên cứu các tài liệu về công nghệ lọc bụi tiên tiến trên thế giới, khảo sát thực tế việc lắp đặt, vận hành Lọc bụi tĩnh điện tại trên 7 công ty xi măng ở trong n−ớc cũng nh− khảo sát kỹ khả năng thiết kế chế tạo lọc bụi tĩnh điện ở Việt nam, nhóm đề tài đã thực hiện các nội dung sau: - Lập bảng thống kê so sánh các loại lọc bụi tĩnh điện, công nghệ và các đặc tính, thông số kỹ thuật của chúng. Trên cơ sở đó phân tích kết cấu, công nghệ chế tạo và lắp ráp của các bộ phận chủ yếu nh− điện cực lắng, điện cực phóng, bộ rung gõ bụi và đặc biệt là bộ điều khiển. Đánh giá phân tích quy trình công nghệ và cấu tạo thiết bị. - Lựa chọn thông số kỹ thuật dự kiến thiết kế; Thu thập tiêu chuẩn thiết kế, ph−ơng pháp tính toán - Tính toán và thiết kế kỹ thuật phần cơ khí và phần điện điều khiển. - Phân tích khả năng và đề ra ph−ơng án chế tạo thiết bị trong n−ớc. - Lập quy trình công nghệ chế tạo, kiểm tra chất l−ợng sản phẩm, quy trình lắp dựng và khảo nghiệm. Đặc biệt các bộ phận chủ yếu (critical parts): các điện cực lắng, điện cực phóng, hệ rung gõ bụi theo công nghệ của hãng Lodge Cottrell. - Nhóm đề tài đã khảo nghiệm bộ điều khiển tự động do nhóm chế tạo tại hiện tr−ờng Công ty Xi măng Lạng Sơn. 3. Kết quả: Kết quả khảo nghiệm cho thấy bộ điều khiển lọc bụi tĩnh điện do nhóm đề tài thiết kế chế tạo đã đạt kết quả theo mục tiêu đề tài đã đề ra. 4. Kết luận: Đề tài nghiên cứu có thể triển khai ứng dụng để thiết ké, chế tạo hệ thống lọc bụi tĩnh điện cho các nhà máy xi măng ở trong n−ớc thay thế các thiết bị hiện đang phải nhập ngoại. 3
  39. Lời mở đầu: Trong những năm gần đây để đáp ứng cho ch−ơng trình phát triền hạ tầng của đất n−ớc, nhiều nhà máy xi măng của các doanh nghiệp trong n−ớc cũng nh− các liên doanh n−ớc ngoài đã đ−ợc xây dựng. Tuy nhiên thiết bị của các dây chuyền công nghệ sản xuất xi măng cũng nh− l−ợng phụ tùng thay thế hàng năm rất lớn vẫn chủ yếu đ−ợc nhập khẩu từ Nhật bản hoặc Châu Âu. Thực hiện chủ tr−ơng nội địa hoá thiết bị, phụ tùng thay thế và tiến tới sản xuất thiết bị đồng bộ của nhà máy sản xuất xi măng của nhà n−ớc, trong ch−ơng trình hợp tác nghiên cứu khoa học và phát triển công nghệ thuộc đề tài cấp Nhà n−ớc mã số KC 06-07 CN ”Nghiên cứu thiết kế, chế tạo thiết bị, phụ tùng thay thế cho công nghiệp xi măng lò quay 1,4 triệu tấn/năm “, Nhóm đề tài của Viện IMI đã tham gia Phần lọc bụi tĩnh điện Q= 1230 m3/phút. Qua quá trình điều tra, khảo sát, nghiên cứu lựa chọn công nghệ từ các thiết bị lọc bụi tĩnh điện tiên tiến của các n−ớc G7, Liên Xô kết hợp với kinh nghiệm nghiên cứu thiết kế chế tạo lọc bụi tĩnh điện của đơn vị, nhóm đề tài đã lựa chọn đ−ợc thông số kỹ thuật của thiết bị, tính toán, thiết kế kỹ thuật, lập quy trình chế tạo, khảo nghiệm. Đồng thời chế tạo và khảo nghiệm bộ điều khiển tự động tại hiện tr−òng nhà máy xi măng. Đề tài là một b−ớc khẳng định khả năng làm chủ công nghệ và hoàn toàn có thể chế tạo thiết bị lọc bụi tĩnh điện hiệu suất cao ở trong n−ớc. 8
  40. Ch−ơng 1 Khảo sát , thu thập và phân tích số liệu về một số hệ thống lọc bụi tĩnh điện ở việt nam 1.1. Đặt vấn đề Ngành sản xuất xi măng là một ngành sản xuất công nghiệp quan trọng của nền kinh tế Việt Nam. Với nguồn nguyên liệu nh− đá vôi, thạch cao và các phụ gia khác t−ơng đối dồi dào, công nghiệp sản xuất xi măng ở n−ớc ta có cơ sở để phát triển. Do đòi hỏi bức bách của thị tr−ờng xây dựng n−ớc ta đã đầu t− nhiều nhà máy xi măng nh− Hải phòng, Hà Tiên I, II, Bỉm Sơn, Hoàng Thạch, Nghi Sơn, Hoàng Mai, Chinfon với nhiều dây chuyền công nghệ nhập ngoại với các trình độ khác nhau từ các n−ớc nh− Rumani, Liên Xô, Đan Mạch, Đức, Pháp, Đài Loan, Trung Quốc hoặc sản xuất trong n−ớc. Với công nghệ khác nhau đ−ợc sử dụng nh− công nghệ sản xuất xi măng theo ph−ơng pháp khô, ph−ơng pháp −ớt, xi măng lò quay, xi măng lò đứng Nh−ng do đặc thù của quá trình công nghệ, công nghiệp sản xuất xi măng phát sinh rất nhiều nguồn bụi và khí thải gây ô nhiễm tiềm tàng cho môi tr−ờng. Do Luật môi tr−ờng ngày càng đ−ợc áp dụng chặt chẽ đặc biệt đối với các dây chuyền mới, các nhà đầu t− đã trang bị các thiết bị xử lý bụi nh− Cyclon, lọc bụi −ớt, lọc bụi túi và lọc bụi tĩnh điện để giảm ô nhiễm môi tr−ờng. Nhiệm vụ nghiên cứu của đề tài là: 1. Điều tra khảo sát tình hình sử dụng lọc bụi tĩnh điện trong các nhà máy ximăng lò quay thu thập phân tích các thông số môi tr−ờng làm việc của lọc bụi tĩnh điện. 2. Đánh giá phân tích quy trình công nghệ, cấu tạo để đ−a ra các kiểu, chủng loại thiết bị tiêu biểu. 3. Thiết kế, lập quy trình chế tạo và khảo nghiệm thiết bị để sản xuất lọc bụi tĩnh điện Q = 1.230m3/ph cho nhà máy xi măng lò quay 1,4 triệu m3/năm. 9
  41. 1.2. Một số hệ thống lọc bụi tĩnh điện Tại các nhà máy xi măng ở Việt Nam 1.2.1 Lọc bụi tĩnh điện tại Công ty xi măng Bỉm Sơn Công ty xi măng Bỉm Sơn sau khi hoàn thành công tác cải tạo hiện đại hoá dây chuyền II sẽ có 4 máy nghiền ximăng, cụ thể là: Ba máy nghiền xi măng số I, II, III làm việc theo chu trình hở do Liên Xô thiết kế, chế tạo và lắp đặt từ năm 1980. Công suất thiết kế mỗi máy là 65 tấn/h. Ximăng sản phẩm sau mỗi máy nghiền đ−ợc vận chuyển lên các silô tồn trữ bằng các thiết bị bơm buồng. Bụi trong khí thải của mỗi máy nghiền đ−ợc xử lý bằng các lọc bụi tĩnh điện riêng biệt. Bụi thu đ−ợc từ lọc bụi tĩnh điện đ−ợc xả trực tiếp vào buồng chứa bột của bơm buồng t−ơng ứng. Máy nghiền ximăng số 1 có kích th−ớc φ 4 x 13,5 công suất động cơ 3.150kw, làm việc theo chu trình hở với năng suất thiết kế 65 tấn/h. Sản phẩm sau khi nghiền đ−ợc thu hồi và vận chuyển tới silô ximăng bằng hệ thống bơm buồng năng suất 80 tấn/h. Bụi sau máy nghiền đ−ợc xử lý bằng lọc bụi tĩnh điện có l−u l−ợng lọc 55.000m3/h, diện tích lọc 945m2. - Tình trạng: Lọc bụi tĩnh điện này vẫn hoạt động theo thiết kế Tuy nhiên lọc bụi này cũng không đ−ợc sử dụng lại sau cải tạo, vì lý do sau: - Nồng độ bụi ra theo thiết kế từ 200 ữ 250 mg/Nm3, v−ợt quá yêu cầu của Luật định ( 100mg/ Nm3) (tiêu chuẩn khí thải công nghiệp về nồng độ bụi TCVN 5939- 1995) - L−u l−ợng lọc không đáp ứng yêu cầu sau cải tạo là: 90.000m3/h. Các số liệu chi tiết về hệ thống lọc bụi tĩnh điện của máy nghiền số 1 của nhà máy xi măng Bỉm Sơn nh− sau : - L−u l−ợng: 1.500m3/ph - Diện tích lọc: 1.650 m2 - Tổn thất áp suất 2 mbar - Nhiệt độ làm việc: 800C - Động cơ: + Vít tải: 5,5 kw + Kín khí: 2,2 kw 10
  42. - Quạt lọc bụi: + L−u l−ợng: 1.500 m3/ph + áp lực: 200mm H2O + Động cơ: 160 kw 1.2.2 Lọc bụi tĩnh điện tại Công ty xi măng Hà Tiên 2 - Xử lý bụi trong khí thải lò quay hệ −ớt - Lọc bụi tĩnh điện: + L−u l−ợng: 136.000 m3/h + Nồng độ bụi đầu vào: 25g/m3 + Nồng độ bụi đầu ra: 100 mg/ Nm3 + Nhiệt độ vận hành: 2500C; max 3500C + áp suất làm việc: 200 mm H2O, max 250 mm H2O + Quạt IDF L−u l−ợng: 150.000 m3/h áp suất: 300 mm H2O Công suất: 170 kw Tốc độ: 780v/ph 1.2.3 Lọc bụi tĩnh điện tại Công ty Xi măng Bút Sơn 1.2.3.1 Lọc bụi tĩnh điện cho Máy nghiền than Chỉ tiêu Đơn vị Số liệu Số liệu quá trình L−u l−ợng khí thải Nm3/h m3/h 79.000/ 107300 Đ/K danh nghĩa Nhiệt độ khí vào 0C 95 áp suất tại đầu vào mmH2O - 80 Độ ẩm % 6,1 Nồng độ bụi g/ Nm3 42 Nồng độ bụi ra (max 50) mg/Nm3 dry 30 Tỉ trọng khí Kg/m3 1,26 Số liệu quá trình L−u l−ợng khí thải Nm3/h m3/h 82.950/ 113.000 Đ/K thiết kế Nhiệt độ khí vào 0C 95 áp suất tại đầu vào mmH2O - 120 Độ ẩm % 5 đến 8 11
  43. Nồng độ bụi g/ Nm3 Max 75 Nồng độ bụi ra (max 50) mg/Nm3 dry 50 Tỉ trọng khí Kg/m3 V di chuyển dòng DN/TK cm/s 7,65/ 7,79 Thông số chung Nguồn gốc xuất xứ LODGE COTRELL/FLS Kiểu M400 LCS Số tr−ờng 3 Số đ−ờng khí (giữa 2 điện cực 15 cùng dấu) Chiều rộng 1 đ−ờng khí mm 400 Diện tích điện cực lắng TK/TT m2 2.839/ 3.492 Số bộ nguồn cao áp/ Nơi đặt 3/ nóc Điện áp kV 110 C−ờng độ dòng điện mA 400 Số bộ dẫn động TB rung gõ bụi kW 3 x 0,25 Kiểu điện cực phóng Thanh dẹt có răng c−a Độ dày điện cực lắng mm 1,2 Độ dày tấm vỏ thân mm 5 Tổn thất áp giữa đầu vào, ra mm H2O 30 Bảo ôn -Diện tích m2 1.210 -Chiều dày mm 100 Thu hồi bụi Xích Bộ 2 Van tháo bụi Cái 6 Khối l−ợng Khối l−ợng toàn bộ Kg 174.000 1.2.3.2 Lọc bụi tĩnh điện cho Máy nghiền xi măng Chỉ tiêu Đơn vị Số liệu Số liệu quá trình L−u l−ợng khí thải DN/TK Nm3/h m3/h 44.440/ 86.700 L−u l−ợng khí thải DN/TK Nm3/h m3/h 32.560/ 60.000 Nhiệt độ khí vào DN/TK 0C 92/ 100 áp suất tại đầu vào DN/TK mmH2O -200/-300 Độ ẩm % 10 Nồng độ bụi g/ Nm3 45 12
  44. Nồng độ bụi ra (max 50) mg/Nm3 dry 50 Hiệu suất % 99,99 Tỉ trọng khí Kg/m3 1,28 L−u l−ợng khí thải Nm3/h m3/h 82.950/ 113.000 V di chuyển hạt bụi cm/s 11,12 V dòng khí m/s 0,62 Thông số chung Nguồn gốc xuất xứ LODGE COTRELL/FLS Kiểu M400 LCS Số tr−ờng 3 Số đ−ờng khí (giữa 2 điện cực 10 cùng dấu) Chiều rộng 1 đ−ờng khí mm 400 Diện tích điện cực lắng TK/TT m2 1.893/2.328 Số bộ nguồn cao áp/ Nơi đặt 3/ nóc Điện áp kV 110 C−ờng độ dòng điện mA 200 Số bộ dẫn động TB rung gõ bụi kW 3 x 0,25 Kiểu điện cực phóng Thanh dẹt có răng c−a Độ dày điện cực lắng mm 1,2 Độ dày tấm vỏ thân mm 5 Tổn thất áp giữa đầu vào, ra mm H2O 30 Bảo ôn -Ddiện tích m2 900 -Chiều dày mm 100 Thu hồi bụi Vít tải Bộ 1 Van tháo bụi Van xoay Khối l−ợng Khối l−ợng toàn bộ Kg 113.000 13
  45. 1.2.4 Các hệ thống lọc bụi điện của các dự án xi măng Công ty xi măng và L−u l−ợng Diện Số Số Nồng độ Nồng độ Điện áp Tốc độ Nhiệt chịu Quạt 3 tích lọc tr−ờng tr−ờng bụi vào bụi ra làm việc lắng đựng EP LBĐ sử dụng m /h m2/ điện cơ (g/Nm3) (mg/Nm3) Kv (m/s) (0C/2h) (Kw) Lò FL Cooler Hoàng Thạch 2 Schmidt Than Lò 474.000 (1160C) 7.088 3 1 70/55 50 111 1,15-1,25 400 Cooler 396.000 (3450C) 7.088 3 1 30 50 111 1,03 400 Lurgi Bỉm Sơn 0 sau cải tạo Than 73.000 (80 C) 2 1 80 50 111 0,95 200 Lò 369.000 8.410 3 1 100 50 111 1,27 300 Cooler 288.000 9.846 3 1 29 50 111 1,27 400 Lurgi Than 96.000 2.897 2 1 36 50 111 0,82 Hoàng Mai XM 182.360 4.575 3 1 130 50 111 0,80 160 Lò 450.000 3 2 67 30 0,8 400 Sơn Nghi Lurgi Cooler 320.000 3 1 20 30 11 0,8 400 Lò 466.000 (1500C) 7.938 3 1 80 50 111 0,93 2.500 Cooler 480.000 (2050C) 9.072 3 1 25 50 111 0,99 Than 110.000 (1000C) 2.700 3 1 80 50 111 0,59 450 Bút Sơn 0 Lodge Cottrell XM 86.000 (96 C) 1.638 3 1 300 50 111 0,77 160 Lò 576.000 (1500C) 12.740 4 1 900 50 110 2.000 Cooler 612.000 (2400C) 8.352 3 1 20 50 80 370 Chinfon 14
  46. Ch−ơng 2 Tổng quan về bụi và lọc bụi tĩnh điện 2.1 Những tính chất cơ bản của bụi 2.1.1 Khối l−ợng riêng Khối l−ợng riêng đ−ợc chia làm 3 khái niệm: khối l−ợng riêng thật, khối l−ợng riêng xếp đống và khối l−ợng riêng cảm nhận. Khối l−ợng riêng thật là khối l−ợng riêng của các hạt bụi xếp sát vào nhau, không có khe hở, còn khối l−ợng riêng xếp đống là khối l−ợng riêng của các hạt bụi có tính đến các khe hở giữa chúng. Khi bụi bị bám dính, khối l−ợng riêng xếp đống tăng từ 1,2 - 1,5 lần. 2.1.2 Phân loại hạt theo kích th−ớc Kích th−ớc hạt bụi là một thông số cơ bản để xác định thiết bị thu bụi. Bụi đ−ợc phân loại theo kích th−ớc tính bằng micromet (àm) và từng nhóm kích th−ớc bằng phần trăm (%). 2.1.3 Tính bám dính của bụi Trong đa số các thiết bị lọc bụi cần xác định giới hạn sử dụng phụ thuộc vào độ bám dính của các hạt bụi. Các hạt bụi có kích th−ớc nhỏ sẽ có độ bám dính lớn. Trong bụi có 60-70% các hạt có đ−ờng kính nhỏ hơn 10 àm sẽ là bám dính mặc dù các hạt khác lớn hơn, có độ xốp. 2.1.4 Khả năng gây mài mòn của bụi Phải tính đến sự gây mài mòn do bụi khi chọn vận tốc dòng khí chứa bụi, độ dày của thành thiết bị và vật liệu phủ bề mặt thiết bị. 2.1.5 Khả năng hút ẩm và hoà tan của bụi Xác định bởi thành phần hoá học và kích th−ớc, hình dạng, độ nhẵn bề mặt của hạt bụi. 2.1.6 Điện trở suất của lớp bụi Là yếu tố ảnh h−ởng lớn đến hoạt động của lọc bụi tĩnh điện. Đ−ợc chia ra làm 3 nhóm vật liệu theo điện trở suất: 15
  47. - Nhóm I: ρ < 104Ω.cm. Khi lắng vào các điện cực, các hạt bụi bị mất điện tích ngay nên có thể bị cuốn đi lần nữa theo khí. - Nhóm II: ρ = 104 ữ 1010Ω.cm. Lọc bụi tĩnh điện khử tốt nhất, vì lắng vào điện cực, các hạt không bị mất tĩnh điện ngay nên có đủ thời gian tạo thành lớp. - Nhóm III: ρ ≥ 10 ữ 13 Ω.cm. Lọc bụi tĩnh điện khử rất khó. Bụi thuộc nhóm này khi lắng vào điện cực sẽ tạo thành lớp bụi xốp cách điện. Khi c−ờng độ điện tr−ờng tăng lên đến giá trị tới hạn nào đó sẽ xảy ra phóng điện qua lớp bụi xốp để tạo thành rãnh nhỏ chứa đầy các ion d−ơng. Tiếp theo sẽ là hiện t−ợng phóng điện vầng quang ng−ợc làm giảm hiệu suất của lọc bụi tĩnh điện. 2.2 Đặc tính điện của một số khoáng chất Bảng thông số về đặc tính dẫn điện của một số loại vật liệu và khoáng chất nh− d−ới đây Công thức hoá Điện trở suất Tên khoáng Mức độ dẫn điện học Ω.m Kim c−ơng 1014 Không dẫn điện Apatit 1016 Không dẫn điện Mica đen Bán dẫn Vonframit 7.107 Bán dẫn Galênit Pbs 3.105 Dẫn điện 6 Gematit Fe2O3 3.10 Dẫn điện Thạch cao - Không dẫn điện Garaphit 7.104 Dẫn điện Disten - Không dẫn điện Vàng - Dẫn điện Inmênhit - Dẫn điện 11 16 Canxit CaCO3 10 ữ 10 Không dẫn điện 4 Caxiterit SnO2 8.10 Dẫn điện 16 21 Thạch anh SiO2 10 ữ 10 Không dẫn điện 2 Manhêtit Fe3O4 1.10 Dẫn điện 16
  48. Mônaxit 1014 Không dẫn điện Môlipden Mo 103 Dẫn điện 3 Pirit FeS2 4.10 Dẫn điện Bạch kim Pt - Dẫn điện Rutil TiO2 - Dẫn điện 4 Siđêrit FeCO3 10 Dẫn điện Silimanit - Không dẫn điện Sfen - Bán dẫn Tantalit 106 Dẫn điện Titannômanhêtit 1,2.102 Dẫn điện Tuốcmalin - Không dẫn điện 14 Fluôrit CaF2 5.10 Không dẫn điện Crômit FeOCr2O3 - Dẫn điện 14 Ziricon ZrSiO4 10 Không dẫn điện Xepuxit PbCO3 - Dẫn điện 15 Selit CaWO4 4.10 Không dẫn điện Bụi ximăng 104 ữ 1012 Bán dẫn 2.3 đặc tính của Bụi và khí thảI trong nhà máy ximăng 2.3.1 Đặc tính vật liệu của bụi trong các nhà máy xi măng Trong công nghiệp xi măng, nhiều loại lọc bụi tĩnh điện đ−ợc sử dụng để hấp thu các loại vật liệu bụi ở những công đoạn sản xuất khác nhau trong nhà máy xi măng: Lọc bụi tĩnh điện cho máy nghiền than Lọc bụi tĩnh điện cho lò sấy Lọc bụi tĩnh điện cho lò nung Lọc bụi tĩnh điện cho máy nghiền liệu Lọc bụi tĩnh điện cho máy nghiền xi măng. Đối với các thành phần bụi khác nhau, có tính chất lý hoá và đặc biệt là điện trở suất khác nhau, thì ảnh h−ởng của chúng đến chế độ làm việc và hiệu suất của lọc bụi tĩnh điện cũng khác nhau. 17
  49. Đối với các máy nghiền liệu (xỉ lò cao, đất sét, đá vôi, thạch cao hay các phụ gia khác) hoặc than, do liệu hay than ở đầu vào còn có ẩm nên trong quá trình nghiền phải hút thêm không khí để làm thoát hơi ẩm của vật liệu. Bụi liệu hoặc than có trong khí thải vào lọc bụi tĩnh điện đều nằm trong khoảng điện trở suất thích hợp cho lọc bụi tĩnh điện làm việc ổn định: - Nhiệt độ khí thải: 30 - 600C. - Điện trở suất: 1,8.109 Ω m đối với than và 0,7.1010- 6,3.1011 Ω m đối với liệu Đối với máy nghiền xi măng, l−ợng ẩm trong khí thải vào lọc bụi tĩnh điện thấp và nhiệt độ cao hơn: - Nhiệt độ khí thải: từ 80 - đến 1200C. - Điện trở suất:0,4.107 Ω m Đối với lò sấy tang quay để sấy than hoặc vật liệu, nhiệt độ khí thải cao hơn 1000C nh−ng th−ờng phải cao hơn nhiệt độ đọng s−ơng 40 – 500C: - Nhiệt độ khí thải: từ 100 - đến 1500C. - Điện trở suất:107 - đến 108 Ω m. Đối với lò quay công nghệ −ớt: - Nhiệt độ khí thải: từ 160 - đến 2500C tuỳ theo chiều dài của lò. - Điện trở suất:1,4.107 - đến 3.109 Ω m. Các quá trình công nghệ trong nhà máy sản xuất xi măng nh− nghiền, phân ly, sấy, nung, tải liệu đều gồm các loại chất liệu có chứa các chất rắn bay theo (bụi). - Kích th−ớc các hạt bụi (đ−ờng kính quy đổi) trung bình : ở quá trình nghiền 7 ữ 10 àm (T1 - trang 18). - L−ợng bụi trong khí thải: 23,3 ữ 268 g/m3. - Nhiệt độ không khí chứa bụi: 64 ữ 1300C. - Độ ẩm: 4 ữ 5%; < 10% (T1 - bảng 47 - trang 296). - Điện trở suất của bụi trong khoảng to = 60 ữ 950C và 10% độ ẩm: 1010 ữ 1011Ω.m. - Phân loại hạt bụi: àm/% ở đầu ra máy nghiền. 18
  50. Kích th−ớc 0ữ10 10ữ20 20ữ30 30ữ40 40ữ60 60ữ90 90ữ200 ữ200 bụi (àm) Kiểu th−ờng 30,2 19,9 19,8 13,6 7,4 7,6 1,3 0,03 Kiểu hầm 60,6 15,7 11,8 3,6 7,5 0,8 - - Thực tế đã xác định, hoạt động (sự làm việc của lọc bụi tĩnh điện để làm sạch khí thải cho các máy nghiền xi măng rất khó khăn vì điện trở suất của bụi cao, độ bám dính lớn gây trở ngại cho rung gõ các điện cực. Vì thế dòng điện trong tr−ờng có thể chỉ đạt 10 ữ 15mA, còn hiệu suất lọc bụi chỉ đạt 85 ữ 95%. Ng−ời ta thí nghiệm để giảm điện trở suất của bụi bằng cách bổ sung n−ớc vào khí thải nh−ng không đem lại kết quả khả quan. Tăng chế độ điện của lọc bụi tĩnh điện để nâng hiệu quả làm việc của chúng đã có kết quả tốt khi thay đổi các điện cực phóng dạng phẳng bằng các điện cực phóng dạng gai. - Nồng độ bụi: Vào lọc bụi tĩnh điện: 60 ữ 350 g/Nm3. Ra 0,1 g/Nm3. - Nhiệt độ: 70 ữ 850C. - Vận tốc: 0,8 ữ 1,0 m/s - Trở lực: 60 kg/m2. - Tiêu hao điện năng cho 1.000m3 khí trong 1 giờ: * Cho lọc bụi tĩnh điện: 0,33 Kwh. * Cho trở lực: 0,34 Kwh Bụi trong đ−ờng ống từ máy nghiền ximăng vào lọc bụi tĩnh điện đã đ−ợc đo đạc và phân tích: khối l−ợng riêng ρ = 2,49 T/m3.; nồng độ bụi = 40 ữ 45 g/m3 và phân loại nh− sau: Kích th−ớc (àm) 0 ữ 5 5 ữ 10 10 ữ 20 20 ữ 40 40 ữ 60 >60 Min Tỉ lệ % 7,60 9,02 23,10 22,60 15,14 18,54 Vận tốc phát tán (cm/s) 0,193 0,773 3,08 10,5 23,2 - 19
  51. Cỡ hạt bụi của các thiết bị nhà máy xi măng Số l−ợng % theo khối l−ợng cỡ hạt (àm) Tên thiết bị 90- 0-10 10-20 20-30 30-40 40-60 60-90 >200 200 Lò quay chiều dài trên 0,1- 100m sản xuất theo 18-50 18-33 5-22 3-12 12-17 2-12 2-6 1,8 ph−ơng pháp −ớt Lò quay chiều dài với 0,1- 20-30 23-32 17-23 6-14 5-14 2-7 2-4 chiều dài nhỏ hơn 100m 0,2 Lò quay làm việc theo p.p 0,2- 0,2- 45-50 20-30 8-10 5-7 5-7 0,5-1 khô 0,5 0,5 0,3- Lò quay có đặc 28-37 16-19 14-17 9-10 3-8 12-13 5-11 0,5 Lò quay với bộ trao đổi 80-82 4-6 3-4 2-4 5-6 - - - nhiệt xyđôn 0,1- Máy nghiền ximăng 28-45 23-25 12-14 9-11 11-12 1,6 0,1-4 0,4 Thiết bị sấy kiểu tang quay 0,1- Than 18-50 15-23 11-23 10-16 9-18 1-13 0,5-2 0,5 0,2- Xỉ 10-18 11-16 10-30 11-14 5-7 11-12 7-8 0,5 Vật liệu khác 75 12 10 Trên 40àm tới 3% 2.3.2 Tính chất của khí thải trong nhà máy xi măng Ngoài điện trở suất của bụi thì một số đặc tính khác của khí thải nh−: nhiệt độ, độ ẩm, tỷ trọng, thành phần hoá học (kể cả các tạp chất khối l−ợng nhỏ nh−ng có ảnh h−ởng đến quá trình nh− SO3) cũng có ảnh h−ởng lớn đến quá trình lọc bụi tĩnh điện. 20
  52. ảnh h−ởng của nhiệt độ và độ ẩm của khí cần làm sạch đến hiệu quả lọc bụi đ−ợc xác định bằng sự liên quan của các yếu tố này tới điện áp tới hạn và điện trở suất của lớp bụi. Điện áp tới hạn tăng lên theo sự tăng của tỷ trọng khí. Bởi vậy khi nhiệt độ hạ xuống, tỷ trọng khí lớn lên và điện áp tới hạn cũng tăng theo, đảm bảo hoạt động ổn định của lọc bụi tĩnh điện ở điện áp cao. Còn hơi n−ớc có trong thành phần của khí cũng làm tăng điện áp tới hạn và nh− thế sẽ làm tăng hiệu quả lọc bụi. Điện trở suất của lớp bụi th−ờng giảm khi nhiệt độ tăng lên, nên trong một số tr−ờng hợp, để giảm điện trở suất của lớp bụi xuống d−ới mức t−ơng ứng với điện áp cực quang ng−ợc, chỉ cần lọc bụi ở nhiệt độ cao hơn. Đối với các vật liệu có điện trở suất cao, hiệu suất lọc bụi tĩnh điện cao trong khoảng nhiệt độ thấp gần với nhiệt độ đọng s−ơng và trong khoảng nhiệt độ t−ơng đối cao để điện trở suất của lớp bụi nhỏ. Trong khí thải đi vào lọc bụi tĩnh điện nếu có một l−ợng thành phần SO3 , NH3 sẽ có ảnh h−ởng tích cực đến hiệu suất lọc bụi. Bởi vì lớp bụi sẽ có điện trở suất nhỏ hơn khi hấp phụ các khí này, đặc biệt khi nhiệt độ dòng khí gần với nhiệt độ đọng s−ơng (trong các lọc bụi tĩnh điện cho các lò sấy). Cỡ hạt bụi chung của các khí thải Kích th−ớc hạt ( àm ) Tỷ lệ % so với khối l−ợng chung 40 2,02 21
  53. 2.4 Phân loại lọc bụi tĩnh điện Lọc bụi tĩnh điện ngày nay đ−ợc sử dụng rộng rãi để lọc các chất rắn và lỏng vì tính đa năng và hiệu suất cao. Hiệu suất lọc bụi tĩnh điện có thể tới hơn 99,9% và lọc đ−ợc các hạt bụi siêu nhỏ từ nồng độ bụi ban đầu tới hơn 50g/m3. Lọc bụi tĩnh điện đ−ợc sử dụng trong vùng nhiệt độ tới 4500C, d−ới tác dụng của môi tr−ờng ăn mòn, với áp suất d−ơng hoặc chân không (áp suất âm). Lọc bụi tĩnh điện có −u điểm lớn là chi phí vận hành thấp, trở lực nhỏ (không lớn hơn 250Pa) nên tiêu hao năng l−ợng lọc cho 1.000m3 khí chỉ bằng 0,1 ữ 0,5 Kwh. Nh−ng lọc bụi cũng cần có vốn đầu t− lớn, suất đầu t− cho các bộ lọc bụi tĩnh điện với năng suất càng nhỏ lại càng lớn và ng−ợc lại. Lọc bụi tĩnh điện có nh−ợc điểm là hiệu quả sẽ thấp khi dùng để khử bụi có điện trở suất quá cao; không sử dụng đ−ợc cho những loại khí tạo thành hợp chất nổ nguy hiểm; và cần có chế độ làm việc, lắp đặt, căn chỉnh rất nghiêm ngặt. Lọc bụi tĩnh điện đ−ợc chia làm hai loại: Lọc bụi tĩnh điện khô và lọc bụi tĩnh điện −ớt. i. Lọc bụi tĩnh điện −ớt: lọc bụi tĩnh điện −ớt dùng để khử bụi dạng vật liệu rắn và đ−ợc rửa khỏi bề mặt lắng bằng n−ớc. Nhiệt độ của dòng khí chứa bụi cần bằng hoặc xấp xỉ nhiệt độ đọng s−ơng của nó khi vào lọc bụi tĩnh điện. Ngoài ra lọc bụi −ớt đ−ợc sử dụng để thu các hạt lỏng dạng s−ơng hoặc giọt ẩm từ dòng khí. Trong các tr−ờng hợp này có thể không cần đến việc rửa bề mặt lắng mà các hạt dạng lỏng tự tích tụ và chảy xuống d−ới. ii. Lọc bụi tĩnh điện khô: Lọc bụi tĩnh điện khô th−ờng dùng để khử các bụi dạng rắn và đ−ợc tách ra khỏi điện cực lắng bằng cách rung gõ. Dòng khí vào lọc bụi tĩnh điện khô phải có nhiệt độ cao hơn hẳn điểm đọng s−ơng để tránh đọng n−ớc trên bề mặt lắng và tránh ôxy hoá cho các điện cực. Dòng khí vào vùng tích cực của lọc bụi tĩnh điện có thể theo chiều ngang hoặc chiều đứng vì thế lọc bụi tĩnh điện đ−ợc chia ra làm: Lọc bụi tĩnh điện ngang và lọc bụi tĩnh điện đứng. Lọc bụi tĩnh điện có thể có nhiều tr−ờng để đảm bảo tính hiệu quả làm việc của nó. 22
  54. Lọc bụi tĩnh điện đứng th−ờng chỉ có một tr−ờng vì làm nhiều tr−ờng sẽ rất phức tạp và vì thế hiệu suất lọc bụi đứng th−ờng thấp. Lọc bụi tĩnh điện ngang rất phổ biến vì những −u việt của nó. Có thể thiết kế chế tạo nhiều tr−ờng và hiệu suất cao. Do vậy chủ tr−ơng thiết kế lọc bụi tĩnh điện ngang, nhiều tr−ờng dạng lọc bụi tĩnh điện khô là h−ớng chính để nghiên cứu. H1. Hình dáng và các bộ phận của một thiết bị lọc bụi tĩnh điện khô, kiểu ngang điển hình đ−ợc thể hiện nh− hình vẽ d−ới đây: 23
  55. 2.5 Một số loại lọc bụi tĩnh điện phổ biến 2.5.1 Lọc bụi tĩnh điện loại UG Là loại lọc bụi tĩnh điện kiểu ngang đ−ợc thống nhất hoá thay cho các loại lọc bụi tĩnh điện đ−ợc sử dụng tr−ớc đây nh− DGPN, PGD, AP, AGDC dùng để khử bụi cho các loại khí với nhiệt độ tới 2500C. Chúng đ−ợc chia làm 3 loại: UG1, UG2, UG3, với chiều cao tích cực của tr−ờng 4,2; 7,5; 12,0m và chiều dài tích cực của tr−ờng 2,5 và 4,0m chúng có thể có 1; 2; 3 hoặc 4 tr−ờng. Điện cực lắng của lọc bụi tĩnh điện loại UG đ−ợc cấu thành từ các tấm mỏng rộng định hình (chiều rộng mỗi tấm 350mm) đ−ợc rung gõ búa ở bên d−ới cùng. Điện cực phóng dạng khung từ các thanh gai treo bên s−ờn, cách điện thạch anh dùng để đỡ xuyên và rung gõ búa. Riêng với loại UG-3 điện cực phóng đ−ợc rung gõ ở hai độ cao . Khoảng cách giữa các điện cực cùng tên: 275mm. 2.5.2 Lọc bụi tĩnh điện loại EGA Là lọc bụi tĩnh điện kiểu ngang đ−ợc cải tiến, hoàn thiện hơn so với UG: khối l−ợng giảm hơn, độ tin cậy cao hơn và các đặc tính tốt hơn. EGA đ−ợc sử dụng với khí bụi có nhiệt độ tới 3300C. Chiều rộng mỗi tấm điện cực lắng 640mm. Khoẳng cách giữa các điện cực cùng tên: 300mm. Theo chiều rộng EGA th−ờng có từ 10 ữ 88 đ−ờng khí và chiều cao tiêu chuẩn: 6,0; 7,5; 9,0; và 12m. Điện cực lắng cấu thành từ 4 ữ 8 tấm nên chiều dài tr−ờng: 2,56; 3,2; 3,84; 4,98; và 5,12m. Số l−ợng tr−ờng từ 2 ữ 4. 2.5.3 Lọc bụi tĩnh điện loại UGT Kiểu UGT dùng để khử bụi của khí công nghiệp với nhiệt độ tới 4250C. Điện cực phóng dạng dây treo tự do, rung gõ búa ở phía trên. Điện cực lắng dạng thanh, rung gõ búa ở giữa. 24
  56. Ngoài ra Nga và Liên Xô (cũ) còn sản xuất các loại lọc bụi tĩnh điện khác dùng trong công nghiệp để chịu nhiệt độ cao, nh− loại OGP dùng cho các khí thải lò nung trong công nghiệp hoá chất; SG dùng cho các loại khí có thể gây nổ; TS dùng cho các dạng khí có bụi mịn trong tuyển khoáng; UB và UBB - lọc bụi tĩnh điện dạng đứng dùng cho khí chứa bụi công nghiệp và bụi than có những điều kiện thuận lợi cho khử bụi. 2.6 các bộ phận cơ bản và ảnh h−ởng của chúng đến hoạt động của lọc bụi tĩnh điện 2.6.1 Nguyên lý làm việc của lọc bụi tĩnh điện H2. Nguyên lý lọc bụi tĩnh điện Dòng khí có bụi đi qua khe giữa các điện cực lắng (dạng hình tấm) và giữa các cực phóng có dạng hình tròn, chữ nhật, vuông, và có thể có gai nhọn, đ−ợc đỡ bằng sứ cách điện cao áp. Cực phóng đ−ợc nối với điện cực âm với điện áp khoảng 30 ữ 120kV. Cực lắng đ−ợc nối với điện cực d−ơng và nối đất. 25
  57. H3. Sự ion hoá chất khí xung quanh điện cực D−ới tác dụng của lực điện tr−ờng, xung quanh cực phóng xuất hiện vầng quang (corona), làm xuất hiện hiện t−ợng ion hoá chất khí và làm cho các hạt bụi bị nhiễm điện. Các hạt bụi này sẽ bị hút về các điện cực trái dấu. Hầu hết các hạt bụi bị nhiễm điện âm nên nó sẽ bị hút về cực lắng. Chừng nào số l−ợng hạt bụi bám đủ dày trên cực lắng, hệ thống búa gõ sẽ gõ vào cực lắng tạo ra dao động và làm các hạt bụi rơi xuống thùng boongke. H4. Hình ảnh của vầng quang (corona) tạo thành xung quanh điện cực phóng có gai 26
  58. 2.6.2 Hệ thống điện cực lắng Kết cấu của điện cực ảnh h−ởng trực tiếp đến hiệu suất thu của lọc bụi tĩnh điện. Hệ thống điện cực lắng th−ờng có hai dạng: dạng tấm và dạng ống. Dạng tấm đ−ợc sử dụng cả trong lọc bụi tĩnh điện đứng và lọc bụi tĩnh điện ngang, còn dạng ống chỉ sử dụng trong lọc bụi tĩnh điện đứng. Yêu cầu chung cho các điện cực lắng là bề mặt h−ớng về điện cực phóng phải bằng phẳng không có lồi, nhô nhọn để ảnh h−ởng (làm giảm) đến điện áp làm việc của lọc bụi tĩnh điện. Hệ thống điện cực lắng có khối l−ợng lớn, chiếm tỷ lệ giá thành cao trong lọc bụi tĩnh điện nên cần thiết để khối l−ợng của chúng nhỏ nhất có thể, sao cho đủ cứng vững, đảm bảo giữ đ−ợc hình dạng bề mặt cho tr−ớc, vì sự biến dạng sẽ làm giảm khoảng cách giữa các điện cực khác dấu và làm kém đi hoạt động của lọc bụi tĩnh điện. Hệ thống điện cực lắng còn phải chịu rung gõ tốt để tách bụi, chịu đ−ợc lực xung do búa gõ trong cả điều kiện nhiệt độ đ−ợc tăng lên. Các điện cực lắng dạng tấm phải đ−ợc lựa chọn cho phù hợp, sao cho giữ lại đ−ợc các hạt bụi đã lắng không bị cuốn đi lần thứ hai. Các điện cực lắng dạng tấm có các loại: dạng phẳng, dạng hộp, dạng máng và dạng biên dạng (profil) hở. Ngày nay điện cực lắng dạng tấm có biên dạng hở đ−ợc sử dụng rộng rãi vì những −u việt của nó: - Đảm bảo độ cứng vững lớn nhất với chi phí vật liệu nhỏ nhất. - Giảm tối đa l−ợng bụi cuốn theo khí lần thứ 2 vì có phần che thuỷ khí động lực học. - Có thể sử dụng với vận tốc dòng khí lớn tới 1,7 m/s và chiều dày của tấm chỉ cần trong khoảng 0,8 ữ 1,5 mm và vì thế nó có tính kinh tế nhất. Hiện nay trong công nghiệp sản xuất xi măng lò quay, các bộ lọc bụi tĩnh điện th−ờng sử dụng các điện cực lắng dạng tấm. Điện cực lắng của lọc bụi tĩnh điện đ−ợc chế tạo từ thép tấm chống ăn mòn điện hoá (08KP, Ct 0 hoặc t−ơng đ−ơng) có chiều dày từ 1,2 đến 2 mm, bằng cách cán 27
  59. định hình tăng cứng và tạo các profil cần thiết để thu giữ bụi hoặc tổ hợp các tấm phẳng với các thanh thép U tạo khả năng giữ bụi. Điện cực lắng của các loại lọc bụi khô khác th−ờng đ−ợc cán định hình từ tôn tấm theo các biên dạng khác nhau; vì thế dễ bị biến dạng trong quá trình sử dụng do ứng suất d−. Để khử ứng suất d− trong gia công phải ủ hoặc th−ờng hoá các điện cực sau khi đã hoàn chỉnh. Điều này sẽ gây tổn th−ơng cho bề mặt lắng. H5. Hình dáng bên ngoài của hệ thống điện cực lắng dạng tấm Các tấm điện cực lắng của lọc bụi tĩnh điện sẽ thiết kế phải đảm bảo khả năng chế tạo đơn giản với thanh thép chữ U để tránh hiện t−ợng bụi đã lắng bị cuốn đi theo dòng khí. Các tấm điện cực lắng đ−ợc nối với vỏ của lọc bụi tĩnh điện và đ−ợc tiếp đất an toàn theo quy định. 28
  60. 2.6.3 Hệ thống điện cực phóng (vầng quang) Các điện cực phóng (vầng quang) đ−ợc ghép d−ới dạng khung tổ hợp và chúng tạo thành các khối cho từng tr−ờng và treo trên các bộ sứ cách điện cao áp. Các điện cực phóng có thể đ−ợc làm bằng các dây thép nicrom với đ−ờng kính Φ2 đến Φ5 mm hoặc bằng các thanh hay lá thép với biên dạng khác nhau, có gai hoặc không có gai. Các điện cực phóng dạng dây trơn th−ờng đ−ợc treo và kéo căng nhờ một quả nặng d−ới tác động của trọng tr−ờng. Các gai trên điện cực phóng tạo ra các điểm phóng điện iôn mạnh dễ kiểm soát so với điện cực phóng dạng trơn. 2.6.3.1 Hệ thống điện cực phóng ghép khung Chỉ sử dụng đ−ợc khi kết hợp với điện cực lắng dạng tấm và bị hạn chế bởi nhiệt độ làm việc đến 300 ữ 3500C vì khi nhiệt độ cao hơn sẽ xảy ra hiện t−ợng vặn khung ống. 2.6.3.2 Hệ thống điện cực phóng treo tự do Sử dụng đ−ợc cả cho điện cực lắng dạng tấm và dạng ống. Nó có nh−ợc điểm là lắp ráp phức tạp; có thể xảy ra hiện t−ợng dạt trôi từng điện cực hoặc cả hệ thống, nhất là khi độ cao hơn 4 ữ 5 m; phức tạp trong việc tổ chức rũ bụi bám. 2.6.3.3 Hệ thống với các điện cực phóng cứng vững Gồm các phần tử cứng vững liên kết với nhau tạo thành khung không gian. Các điện cực phóng phải có kích th−ớc hình học chính xác để tạo ra sự phóng điện vầng quang mạnh mẽ và đồng đều. Các điện cực phóng th−ờng có tiết diện nhỏ hơn nh−ng chiều dài tới hàng km nên vấn đề đảm bảo độ bền vững của nó là chìa khoá của độ tin cậy lọc bụi tĩnh điện vì chỉ cần đứt một điện cực là cả một tr−ờng bị loại. 2.6.3.4 Điện cực phóng có diểm phóng không cố định Đ−ợc làm từ các dây dẫn có tiết diện tròn hoặc các hình thù khác. Các điểm phóng vầng quang không nằm cố định và đ−ợc phân bổ dọc theo chiều dài điện cực phụ thuộc vào chế độ làm việc của lọc bụi tĩnh điện và tình trạng bề mặt của điện cực. 2.6.3.5 Điện cực phóng với các điểm phóng cố định Là các dây hoặc thanh dẫn với các gai hoặc răng cách đều theo chiều dài. 29
  61. Điện cực phóng dạng này có khả năng cho tr−ớc dòng xác định của vầng quang bằng cách thay đổi b−ớc tạo gai và chiều cao của nó nên có thể tăng hiệu suất lọc bụi tĩnh điện. Hiện nay điện cực phóng dạng này đ−ợc sử dụng −u việt trong các lọc bụi tĩnh điện khô. H6. Hình dáng bên ngoài của hệ thống điện cực phóng ghép khung Để đảm bảo độ cứng vững, tin cậy trong vận hành và dễ kiểm soát hiện t−ợng phóng điện, trong lọc bụi tĩnh điện thiết kế sử dụng loại điện cực phóng làm bằng ống thép Φ20 mm có hàn gai. Hệ thống khung treo điện cực phóng của mỗi tr−ờng lọc bụi tĩnh điện đ−ợc tổ hợp thành một khối chắc chắn và đ−ợc treo - định vị chính xác nhờ các bộ sứ cách điện cao áp. Vì điều kiện vận hành có độ ẩm cao, nhất là trong những ngày m−a và nồm, nên các bộ sứ này đều đ−ợc bố trí các bộ sấy đi kèm để đảm bảo cách điện cao áp của chúng. 30
  62. Một trong các yếu tố kết cấu ảnh h−ởng đến hiệu suất thu lọc bụi đó là chiều cao hệ thống điện cực. Ngày nay do điều kiện hạn chế mặt bằng lắp đặt và để tăng năng suất của các lọc bụi, có xu h−ớng tăng chiều cao hệ thống điện cực tới 12 mét và cao hơn. Nh−ng thực tế, chiều cao hệ thống điện cực càng cao sẽ làm tăng chiều cao rơi của bụi khi rung gõ, nghĩa là tăng khả năng bị cuốn theo dòng khí. Vì thế trong lọc bụi tĩnh điện thiết kế sử dụng hệ thống điện cực có chiều cao bằng 9 mét. Với chiều cao nh− vậy, khi rung gõ rũ bụi, lực gõ sẽ truyền đủ tới mọi điện cực làm tách bụi; hơn nữa giảm đáng kể l−ợng bụi bị cuốn theo dòng khí nên đảm bảo hiệu suất thu lọc bụi. 2.6.4 Hệ thống rung gõ điện cực lắng và phóng 2.6.4.1 Rung đập điện cực Hê thống rung thực hiện bằng cách đẩy các điện cực đ−ợc treo lệch tâm bằng một cơ cấu cam theo h−ớng nằm ngang và tiếp theo là thả đột ngột cho điện cực về vị trí ban đầu; các điện cực sẽ va chạm vào nhau và rũ bụi bám vào bề mặt của mình. Với một hành trình rung rũ bụi nh− vậy, sẽ tạo ra một ứng suất đáng kể và kết quả là sự mài mòn. 2.6.4.2 Rung rũ bằng búa gõ Đây là biện pháp phổ biến nhất hiện nay cho cả hệ điện cực phóng và lắng. Cần có khối l−ợng búa gõ nhỏ nhất đủ để rũ bụi bám vì lực xung của búa gõ sẽ làm mài mòn các chi tiết va đập. Các búa gõ vào các điện cực có thể không đồng thời mà chia ra làm các khoảng thời gian bằng nhau nên có thể giảm đ−ợc tối thiểu hiện t−ợng bụi bay theo lần 2. Hơn nữa thực tế chứng minh rằng với các điện cực lắng cao 12,5m cũng chỉ cần một hệ búa gõ ở một mức cũng đảm bảo đủ rung rũ bụi. T−ơng tự nh− vậy cũng sử dụng cho hệ rung gõ điện cực phóng. 2.6.4.3 Rung đập xung Cũng t−ơng tự nh− hệ búa gõ nh−ng chuyển động bằng thuỷ lực hay nam châm điện. Hệ thống này có thuận tiện là điều khiển đ−ợc lực đập và khoảng thời gian giữa các lần trong khoảng rộng. Nh−ng vì sự phức tạp của các cơ cấu xung nên hiện tại ch−a tìm đ−ợc sự ứng dụng rộng rãi. 31
  63. 2.6.4.4 Rung rũ bụi dạng rung Hệ thống rung sử dụng nam châm điện hoặc cơ cấu rung điện - cơ nhằm tạo các dao động định h−ớng hoặc không định h−ớng để rung rũ bụi tích tụ ở các điện cực. Nh−ng vì kết cấu phức tạp lại kém tin cậy khi làm việc lâu dài với những dao động gây mỏi và phá huỷ các chi tiết nên trong thực tế ít đ−ợc ứng dụng. H7. Hệ thống búa gõ các điện cực lắng và điện cực phóng 32
  64. 2.6.5 Hệ thống cách điện lọc bụi tĩnh điện Các bộ cách điện của lọc bụi tĩnh điện phải làm việc trong môi tr−ờng nhiệt ẩm của khí với nồng độ bụi cao. Vì vậy chúng th−ờng đ−ợc đặt ở trong hộp bên ngoài dòng khí với các biện pháp nhằm giữ cho chúng không bị bụi bẩn. Đặc biệt phải giữ sao cho nhiệt độ bề mặt các bộ phận cách điện phải cao hơn điểm đọng s−ơng. Trong các lọc bụi tĩnh điện khô th−ờng sử dụng các bộ cách điện có bộ sấy khi khởi động lọc bụi tĩnh điện và trong một số tr−ờng hợp khác có yêu cầu. Trong tr−ờng hợp các hạt bụi là chất dẫn điện (mồ hóng, bụi than, ) th−ờng phải sử dụng hệ thống thổi khí sạch hoặc không khí vào các hộp cách điện. Các bộ cách điện của điện cực phóng và cơ cấu rung gõ của chúng là đặc biệt quan trọng với các lọc bụi tĩnh điện. Các bộ cách điện th−ờng đ−ợc làm bằng sứ hoặc thạch anh. Đối với sứ cách điện trong lọc bụi tĩnh điện cần sử dụng chất liệu đặc biệt: chịu tải và có tính chất không dẫn điện tốt ở nhiệt độ cao. Trong thực tế sứ cách điện đ−ợc sử dụng rộng rãi khi nhiệt độ của dòng khí nhiễm bụi không v−ợt quá 250 ữ 3500C và nhiệt độ đọng s−ơng của hơi axit không cao hơn 120 ữ 1500C. H8. Bộ phận sứ cách điện 33
  65. Thạch anh kém bền lực hơn sứ nên th−ờng có độ tin cậy thấp hơn đặc biệt khi có tải trọng lớn. Nh−ng thạch anh có tính cách điện ở nhiệt độ cao tốt hơn sứ nên th−ờng sử dụng ở nhiệt độ cao hơn 250 ữ 3500C. Vật liệu có triển vọng để làm cách điện cho lọc bụi tĩnh điện là một vài chủng loại sitall. Trong một số tr−ờng hợp có thể sử dụng làm cách điện trong lọc bụi tĩnh điện một vài chi tiết bằng vật liệu cách điện tổng hợp. Đặc biệt những ống bằng thuỷ tinh - êpoxy cách điện đ−ợc dùng làm trục cách điện cho các cơ cấu rung gõ điện cực phóng trong lọc bụi tĩnh điện vì có độ bền cơ cao. 2.6.6 Hệ thống phân phối khí của lọc bụi tĩnh điện Hệ thống phân phối khí là các kết cấu và thiết bị phân phối dòng khí đi vào lọc bụi tĩnh điện, mục đích làm cho dòng khí phân bố đều trong mọi mặt cắt của lọc bụi tĩnh điện để các bề mặt thu bụi có thể hoạt động trong các điều kiện đồng nhất và cản trở không cho dòng khí đi qua phần không tích cực của lọc bụi tĩnh điện. Nếu không có hệ thống này, dòng khí phân bổ không đều trong lọc bụi tĩnh điện: có nơi nhiều (vận tốc cao hơn) và có nơi ít (vận tốc thấp hơn); làm cho có nơi bụi bám nhiều, có nơi ít và khi rung gõ sẽ bị cuốn nhiều theo dòng khí ở nơi vận tốc cao. 2.6.6.1 Hệ thống l−ớiphân phối khí Để phân phối dòng khí đều theo mặt cắt tích cực của lọc bụi tĩnh điện có thể sử dụng các mặt sàng phân phối, các tấm dẫn h−ớng và các cơ cấu khác. Các bộ phân phối khí th−ờng làm thay đổi dòng khí nên hay bị tách các hạt bụi thô ở đó. Vì thế cần phải có cơ cấu rung gõ hoặc biện pháp để thu và thải l−ợng bụi này, tránh bám dính làm ảnh h−ởng tới dòng khí đi qua. H9. Sự phân bố của dòng khí trong các tr−ờng 34
  66. Hệ thống l−ới phân phối khí th−ờng có kết cấu: là 02 tấm mặt sàng khoan lỗ với tiết diện sống bằng khoảng 32% đặt cách nhau, hoặc cửa phân phối dạng chớp hình lăng trụ tiết diện sống bằng 50% kết hợp với mặt sàng nh− trên. Dạng thứ nhất chỉ cho khả năng đồng đều của dòng khí tới 80%. Cửa phân phối dạng chớp, hình lăng trụ, tiết diện sống bằng 50% kết hợp với một mặt sàng, đảm bảo đồng đều dòng khí đến 96% và nếu kết hợp với 02 mặt sàng sẽ đảm bảo tới 98%. H10. Hệ thống l−ới phân phối khí Vì vậy, để nâng cao hiệu suất thu lọc bụi tối đa, lọc bụi tĩnh điện thiết kế cần có hệ thống phân phối khí dạng chớp, hình lăng trụ, tiết diện sống bằng 50% kết hợp với 02 mặt sàng tiết diện sống 32%. 2.6.6.2 Các tấm chắn dòng khí của phễu thu bụi Để đảm bảo hiệu suất cao của lọc bụi tĩnh điện cần có giải pháp để ngăn chặn dòng khí đi qua các vùng “không tích cực” của tr−ờng điện. Trong lọc bụi ngang đó là các vùng phía trên và d−ới các tấm điện cực, các vùng không gian của các phễu thu 35
  67. bụi, các vùng nằm giữa các tấm điện cực lắng ở dãy ngoài cùng và vỏ thành của lọc bụi tĩnh điện. Lọc bụi tĩnh điện cần có hiệu suất rất cao 98 ữ 99,9% nên một l−ợng nhỏ khí chứa bụi đi qua các vùng đó đã ảnh h−ởng đáng kể đến kết quả lọc bụi. Vì vậy trong kết cấu của lọc bụi tĩnh điện cần chú ý đến hệ thống các vách ngăn dòng, chặn dòng để tạo trở lực cho dòng khí ở những vùng “không tích cực” và bằng cách đó để giảm l−ợng khí này tới tối thiểu. Ngoài ra, sau khi rung gõ các điện cực, bụi đã tích tụ sẽ rơi xuống phễu thu bụi và lại tung ra thành “đám mây bụi”. “Đám mây bụi” này có thể bị cuốn đi và làm giảm hiệu suất của lọc bụi tĩnh điện. Bởi vậy trong lọc bụi tĩnh điện cần phải bố trí các tấm chắn dòng khí trên các phễu thu bụi. 2.6.7 Hệ thống phễu chứa bụi và thiết bị thải bụi Hệ thống phễu chứa bụi của lọc bụi tĩnh điện là bộ phận thu gom bụi sau khi bụi đ−ợc rung gõ và rơi xuống từ các điện cực. Các phễu có độ dốc hợp lýđảm bảo bụi đ−ợc thu xuống đáy phễu. Bụi thu gom ở đáy phễu đ−ợc thải ra ngoài bằng vít tải thông qua van quay kín khí tháo bụi nhằm mục đích ngăn chặn dòng khí thâm nhập từ bên ngoài vào lọc bụi tĩnh điện. Để tránh hiện t−ợng bết dính, các phễu thu chứa bụi còn đ−ợc bố trí các bộ sấy và các bộ rung gõ tháo bụi. 2.6.8 Số tr−ờng tĩnh điện trong lọc bụi Số tr−ờng tĩnh điện trong lọc bụi có ý nghĩa to lớn với hiệu suất thu lọc bụi. Nó quyết định bề mặt lắng bụi khi đã tính toán và chọn vận tốc dòng khí nhất định và thời gian l−u của dòng khí trong lọc bụi tĩnh điện. Hệ thống lọc bụi tĩnh điện cần thiết kế sẽ có 03 tr−ờng độc lập, nối tiếp nhau. Điều này đảm bảo hiệu suất lọc bụi của toàn thiết bị vì có tổng diện tích bề mặt lắng cần thiết và có thể điều khiển các giá trị điện áp - dòng điện trong mỗi tr−ờng sao cho phù hợp với vận tốc dịch chuyển của các hạt bụi, ứng với các kích th−ớc hạt bụi khác nhau. Điện áp các tr−ờng có xu h−ớng tăng dần theo đ−ờng đi của dòng khí để bổ sung cho vận tốc dịch chuyển của các hạt bụi có kích th−ớc nhỏ và tăng c−ờng khả năng thu bụi của các tr−ờng tiếp sau. 36
  68. 2.7 Lựa chọn các bộ phận của lọc bụi tĩnh điện Các hạt bụi trong tr−ờng lọc bụi tĩnh điện, nhận điện tích và d−ới tác động của lực điện tr−ờng, chuyển động với vận tốc dịch chuyển v về phía các điện cực. Đối với vận tốc dịch chuyển của các hạt bụi, yếu tố quyết định là c−ờng độ điện tr−ờng. Các thông số: điện áp trên các điện cực và c−ờng độ dòng điện của tr−ờng sẽ quyết định tính chất điện tr−ờng của lọc bụi tĩnh điện và từ đó quyết định hiệu suất của thiết bị. Vì thế, điều kiện tốt nhất cho thu lọc bụi là giữ cho điện áp giữa các điện cực ở giá trị cực đại. Tuy nhiên, điện áp giữa các điện cực lại liên quan đến: Chất l−ợng cơ khí của lọc bụi tĩnh điện _ sự định tâm chính xác và chất l−ợng bề mặt của các điện cực. Đặc tính của dòng khí chứa bụi _ quyết định điện áp phóng của điện tr−ờng. Chất l−ợng của hệ thống thiết bị điện điều khiển _ khả năng duy trì điện áp tối đa giữa các điện cực, gần với giá trị của điện áp phóng. Mỗi một trục trặc của từng bộ phận cơ khí hoặc hệ điều khiển của lọc bụi tĩnh điện xảy ra sẽ làm thay đổi quá trình lọc bụi và theo thời gian làm giảm hiệu suất lọc bụi so với ban đầu. Chính vì vậy, bên cạnh việc thiết kế hệ thống điều khiển ổn định, tin cậy thì việc lựa chọn các kết cấu, bộ phận cơ khí sao cho phù hợp sẽ ảnh h−ởng lớn đến khả năng duy trì điện áp ổn định giữa các điện cực. Điện cực lắng dạng tấm, biên dạng profil hở, với các −u điểm: Khả năng chế tạo đơn giản, Kết cấu gọn nhẹ mà vẫn đảm bảo độ cứng vững Khả năng l−u giữ bụi cao đ−ợc chọn cho hệ thống lọc bụi tĩnh điện sẽ thiết kế. Hệ thống điện cực phóng dạng treo, kéo căng bằng quả nặng khó định tâm chuẩn xác khi lắp đặt, ngoài ra chúng th−ờng bị vặn vẹo do tác động của nhiệt độ và biến dạng d−ới tác động của hệ thống búa gõ, vì thế ảnh h−ởng nhiều đến điện tr−ờng giữa các điện cực, làm giảm chất l−ợng làm việc của lọc bụi tĩnh điện. 37
  69. Chính vì vậy, hệ điện cực phóng dạng khung cứng treo trên các sứ cách điện cao áp đ−ợc chọn cho thiết bị lọc bụi tĩnh điện thiết kế. Hệ thống các điện cực này sẽ đ−ợc tổ hợp thành các khối cho từng tr−ờng. Hệ thống rung rõ điện cực kiểu búa gõ với những −u điểm: Khối l−ợng búa gõ nhỏ cũng đủ để rũ bụi bám Búa gõ vào các điện cực có thể không đồng thời mà chia ra làm các khoảng thời gian bằng nhau nên có thể giảm đ−ợc tối thiểu hiện t−ợng bụi bay theo lần 2. Búa gõ có thể đặt ở nhiều mức khác nhau theo chiều cao của điện cực Chế độ truyền động cho các búa gõ của 1 tr−ờng chỉ cần dùng 01 động cơ công suất nhỏ. nên sẽ đ−ợc chọn cho hệ thống rung các điện cực phóng và điện cực lắng. Nh− vậy , các bộ phận cơ bản của lọc bụi tĩnh điện sẽ thiết kế nh− sau: Lọc bụi tĩnh điện khô kiểu ngang. Điện cực lắng dạng tấm biên dạng hở. Điện cực phóng dạng khung với các điện cực có điểm phóng cố định. Hệ thống rung gõ các điện cực lắng và điện cực phóng bằng búa gõ. Hệ thống tháo bụi nhiều cấp để tránh ẩm và kẹt bộ tháo bụi. Hệ thống cách điện cao áp bằng sứ cao áp. 38
  70. Ch−ơng 3 tính toán thiết kế kết cấu cơ khí của lọc bụi tĩnh điện 3.1 Các thông số ban đầu L−u l−ợng khí : 1230 m3/phút, hay 20.5 m3/s hay 73.800m3/giờ Nhiệt độ khí : 1000C. Nồng độ bụi vào : 50 g/m3. Nồng độ bụi ra ≤ 50 mg/Nm3. Độ ẩm : 61% Kích th−ớc hạt bụi bé nhất : 0,1àm. 3.2 Hiệu suất tối thiểu cần có của Lọc bụi tĩnh điện BV − BR η = .100% (1.1 ) BV Trong đó: 3 BV _ Nồng độ bụi vào ở điều kiện tiêu chuẩn ( mg/Nm ) 3 BR _ Nồng độ bụi ra ở điều kiện tiêu chuẩn ( mg/Nm ) ' P 273 + t Bν = B V . . ( 1 2 ) PL 273 + 20 Trong đó: 3 3 Bν′ = 50 g/m = 0,05 g/m – Nồng độ bụi vào ở điều kiện vận hành P = 1,013.105 N/m2 _ áp suất khí quyển tiêu chuẩn 2 PL= 101300 – 2000 = 99.300 N/m _ áp suất trong lọc bụi tĩnh điện t = 1000C _ Nhiệt độ dòng khí 101.300 273 + 100 B = 50. . = 64,93 (mg/Nm3 ) (1.3 ) V 99.300 273 + 20 Hiệu suất cần có của lọc bụi tĩnh điện để đảm bảo yêu cầu nồng độ bụi ra: 64,93 − 0,05 η = = 99,923% ( 1.4 ) 64,93 39